

Best Practices Series Maximizing the Use of Your IMS Data with Replication

Prepared for the:

Virtual IMS User Group

5 February 2013

Agenda

- > Introduction
- Leveraging Replication for IMS Data Usage
- ➤ In-Depth Look at IMS Replication Components
- Sample Deployment Scenarios
- Common Challenges
- > Q & A
- Conclusion

About the Speaker

- Scott Quillicy
 - ✓ 30+ Years Database Experience
 - Commercial Database Software Development
 - Deployment of Complex Data Integration Solutions

- ✓ An Enterprise Class Data Integration / Replication Framework
- A Solution for Both Relational and Non-Relational Data
- Technology Built Around Best Practices

Specialization

- Database Replication
- ✓ IMS the More Complex, the Better
- Heterogeneous Database Integration
- Continuous Availability
- Database Performance

About SQData

- "Swiss Army Knife of Data Replication Tools"
- Core Competencies
 - ✓ High-Performance Changed Data Capture (CDC)
 - ✓ Non-Relational Data → IMS, VSAM, Flat Files
 - ✓ Relational Databases → DB2, Oracle, SQL Server, etc.
 - Deployment of Complex Data Integration Solutions
 - Continuous Availability of Critical Applications
 - Data Conversions / Migrations
- Customer Usage
 - Relational and Non-Relational Data
 - ✓ Data Replication Relational and Non-Relational
 - ✓ ETL (Bulk Data Extracts/Loads)
 - Application Integration
 - Business Event Publishing
 - Data Conversions / Migrations

Why Replicate IMS Data?

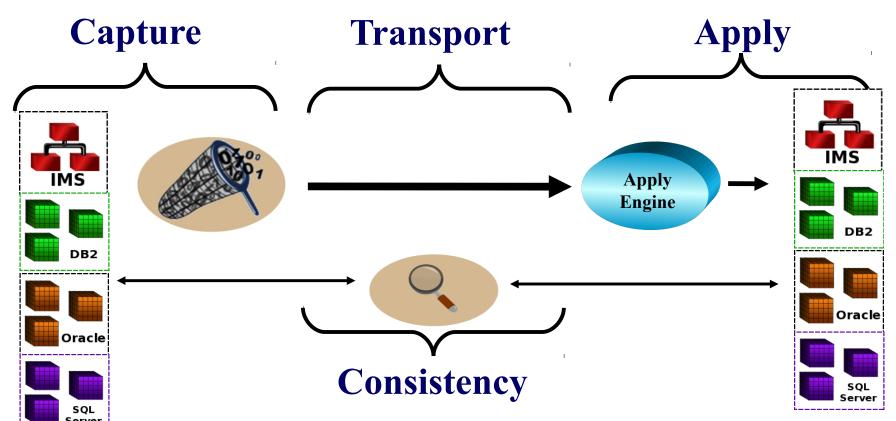
- Provide Users with a Method of Querying Data Outside of IMS
- Continuous Availability
- Business Intelligence / Data Warehousing
- Co-Existence with Newer Applications
- Application Migration / Replacement
- Audit / Historical Data Archive
- ➤ "We're Moving Off of the Mainframe".... ©

How is IMS Replication Being Used Today?

Synchronous vs Asynchronous Replication

> Synchronous

- ✓ Multiple Sites Updated within the same Transaction Scope
- ✓ Ensures Zero (0) Data Loss
- ✓ Downside
 - Transaction Latency MUCH Longer
 - Transactions Fail if All Sites Not Connected (defeats purpose of continuous)


> Asynchronous

- ✓ Single Site Updates
- ✓ Data Captured on Updating Site and Propagated to other Sites
- ✓ Latency Typically Sub-Second
- **✓** Downside
 - Minimal Data Loss May Occur

Replication Basics

Four (4) Primary Components

- ✓ Source Capture
- ✓ Data Transport
- ✓ Target Apply
- ✓ Consistency Monitoring

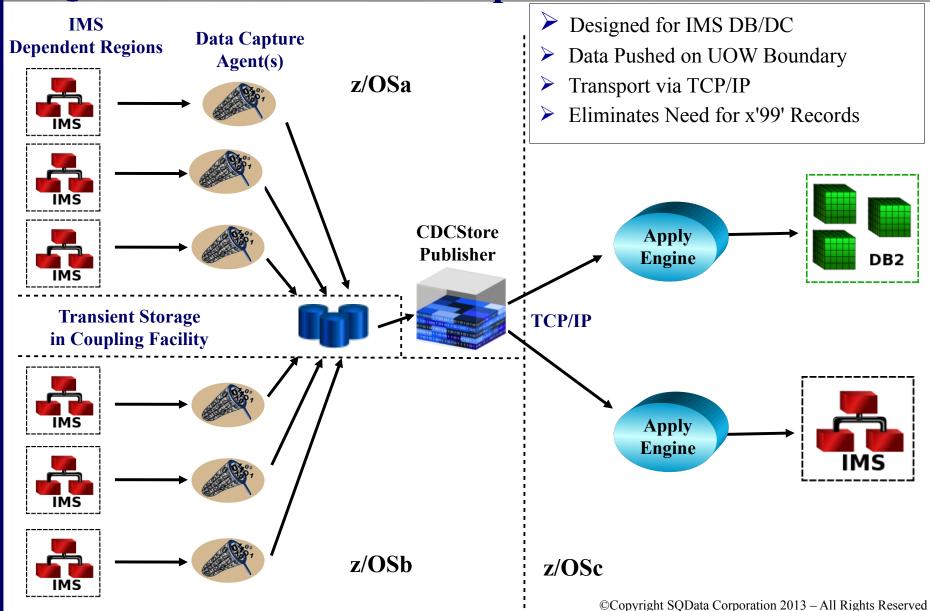
IMS Data Capture Methods

Primary Methods of Capture

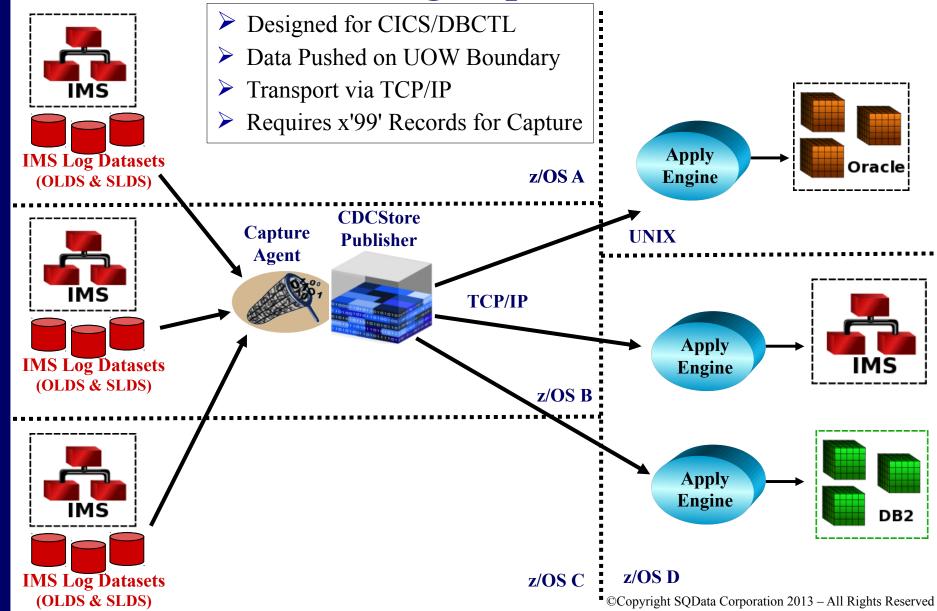
- ✓ Data Capture Exit Routines
- ✓ Log Based
- ✓ Application Based
- ✓ Hardware

Database Exit Routines

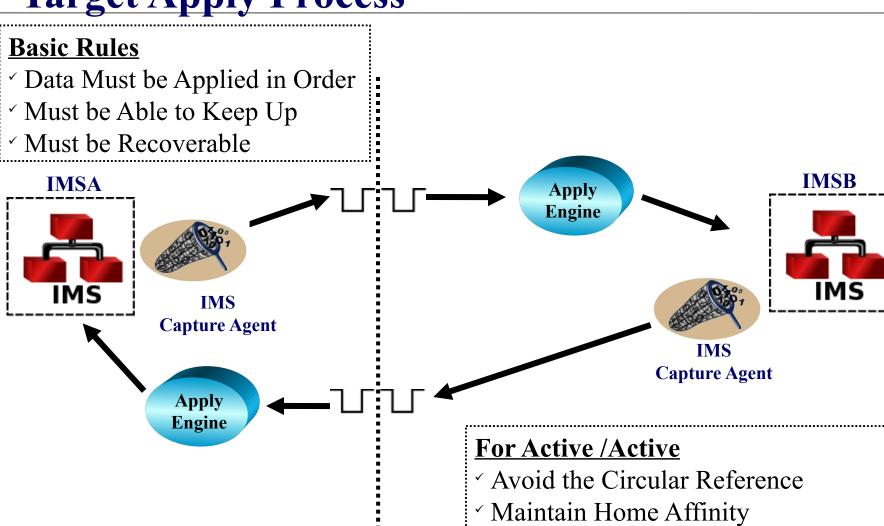
- ✓ Near-Real-Time
- ✓ Scalability → Capture / Apply by FP Area, HALDB Partition, PSB, Database
- ✓ Can Use MQ for Persistent Storage and Transport
- ✓ Do Not Require x'99' Log Records
- ✓ Executes in Dependent Region as Part of Transaction


Log Based

- ✓ Near-Real-Time or Asynchronous
- ✓ Requires x'99' Log Records
- ✓ Allows for Recapture
- ✓ Scalability → Single Capture Point...Apply by PSB
- Executes in Control Region or in Separate Address Space

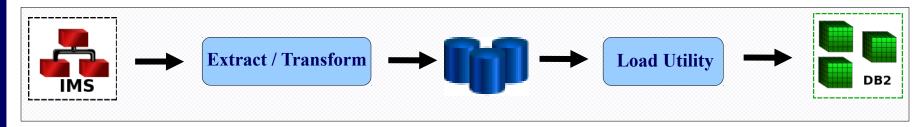

Data Transport Methods

- > Two (2) Primary Methods of Transport
 - ✓ Queue Based
 - ✓ Native TCP/IP
- Queue Based
 - ✓ Handles Persistent Storage in Addition to Transport
 - ✓ Resilient
 - ✓ Can Handle Moderate Data Volume on a Continuous Basis
 - Operates Independently of Capture and Apply
 - ✓ Adds Overhead to Replication Process
- Native TCP/IP
 - ✓ Transport Typically Faster than Queue Based
 - ✓ Can Handle High Data Volume on a Continuous Basis
 - ✓ Requires Separate Transient Storage for CDC Data
 - ✓ Resiliency Must be Built In to CDC Storage
 - ✓ Operation not Always Independent


SQData IMS CDCStore Replication

SQData IMS CDCLog Replication

Target Apply Process


z/OS : z/OS

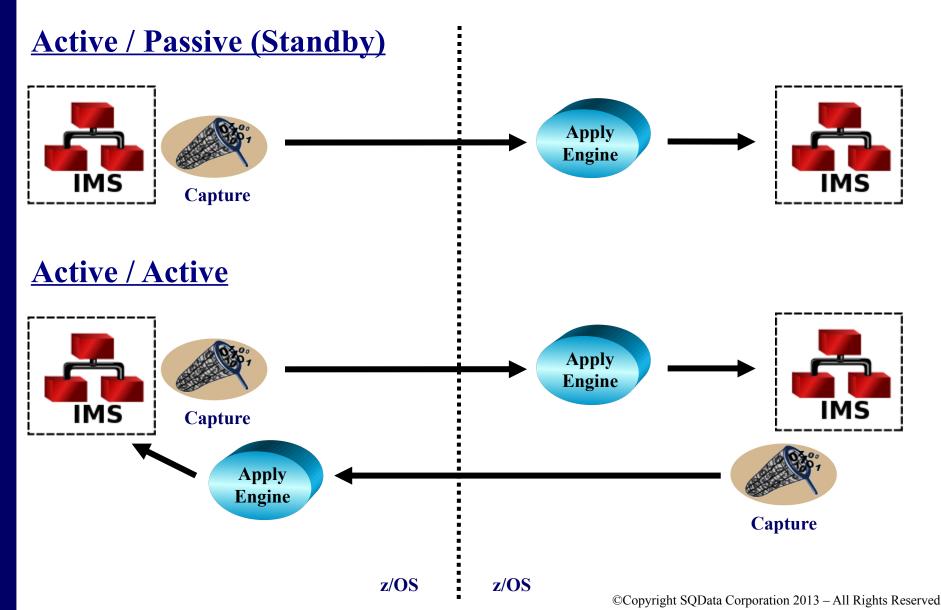
Conflict Detection/Resolution a Must

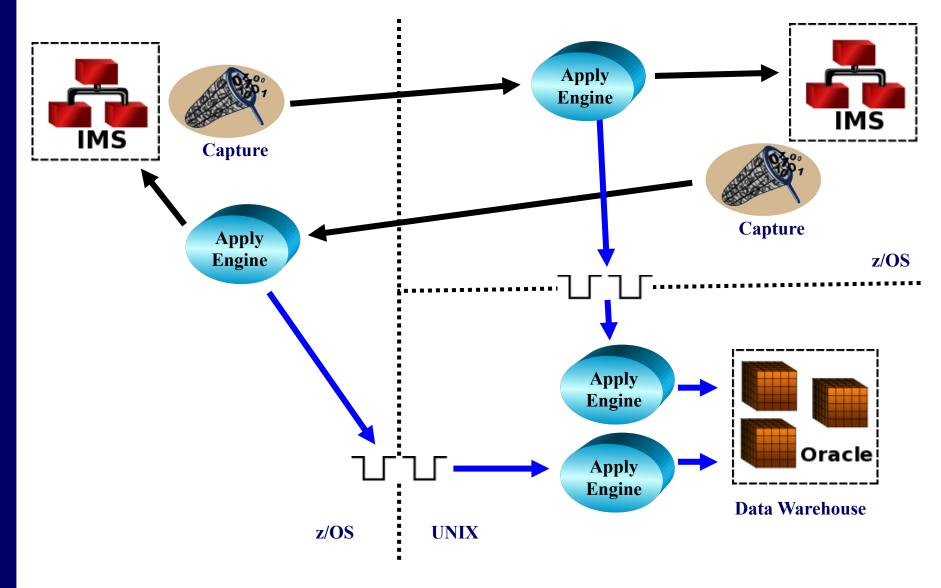
The Role of ETL and CDC

ETL (Extract, Transform, Load):

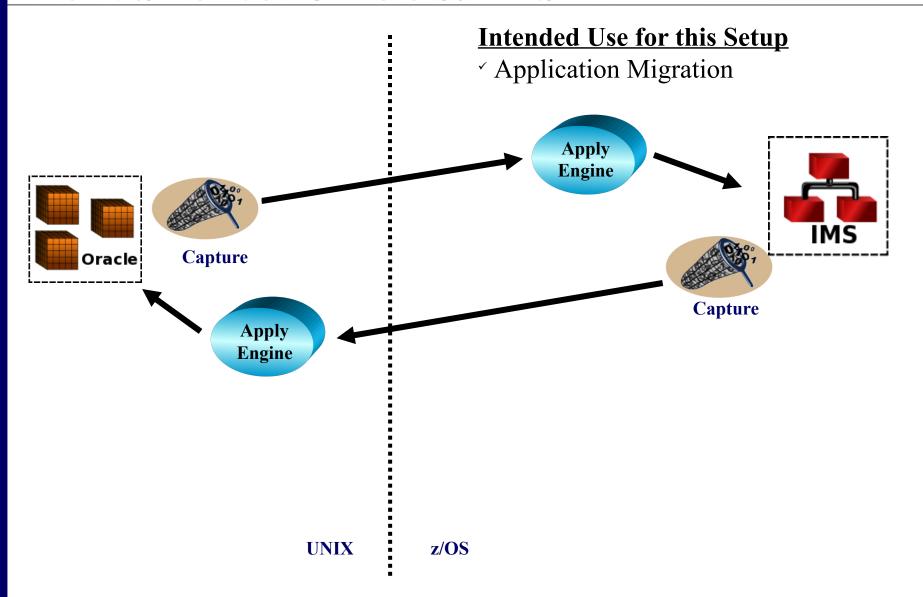
- ✓ Full Data Extract / Load
- ✓ Data Transformation Logic Defined in this Step
- ✓ Iterative Process Must be Fast and Efficient
- ✓ Should Minimize Data Landing

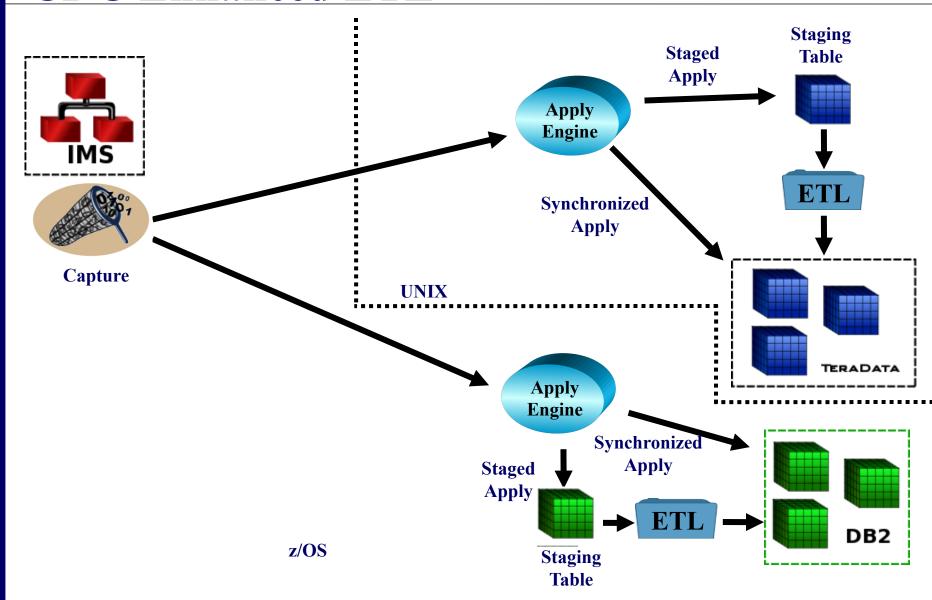
CDC (Changed Data Capture):

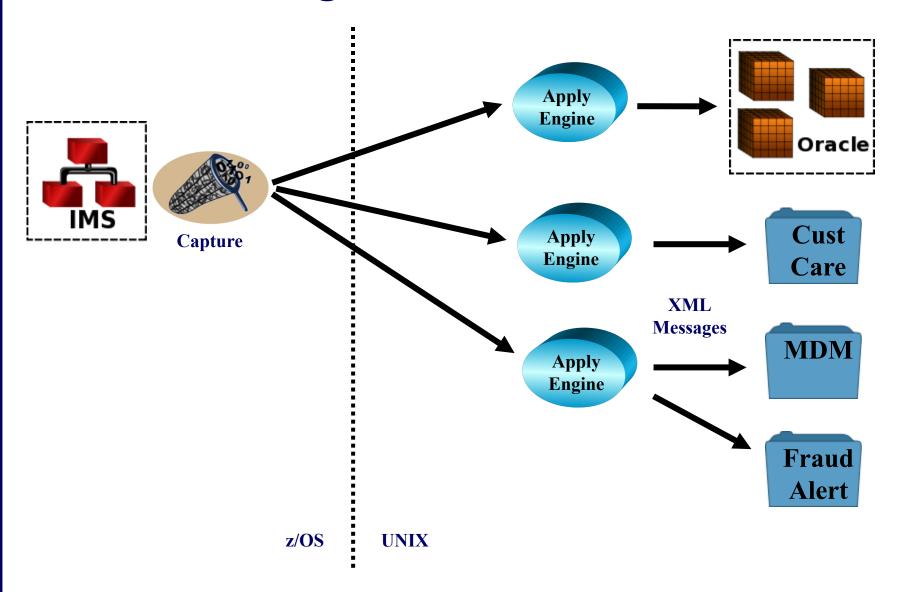

- ✓ Keeps Data In-Sync After Initial Load Allows for a Phased Implementation
- ✓ Should be Able to Re-Use Data Transformation Logic from ETL
- ✓ Should be Able to Replicate Both Ways (Active/Active)


Agenda

- > Introduction
- Leveraging Replication for IMS Data Usage
- ➤ In-Depth Look at IMS Replication Components
- Sample Deployment Scenarios
- Common Challenges
- > Q & A
- Conclusion


High / Continuous Availability

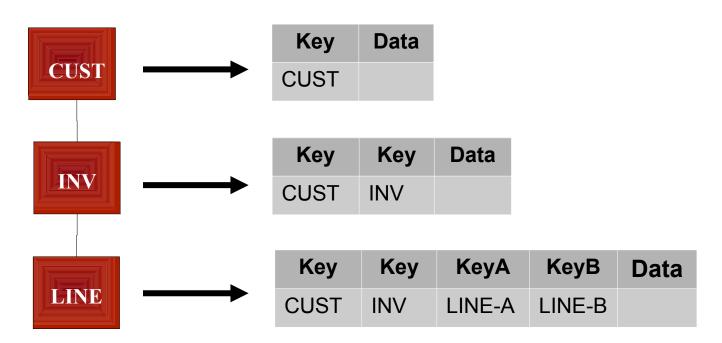

Active/Active with Selective Routing


Active/Active: Oracle & IMS

CDC Enhanced ETL

Event Publishing

Agenda


- > Introduction
- Leveraging Replication for IMS Data Usage
- ➤ In-Depth Look at IMS Replication Components
- Sample Deployment Scenarios
- Common Challenges
- > Q & A
- Conclusion

Common Challenges

- Invalid Data
 - ✓ Non-Numeric Data in Numeric Fields
 - Binary Zeros in Packed Fields (or Any Field)
 - ✓ Invalid Data in Character Fields
 - ✓ Business Rule Violation Requires Assistance from SME
- Dates
 - Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
 - ✓ May Require Knowledge of Y2K Implementation
 - ✓ Allow Extra Time for Date Intensive Applications
- Non-Keyed Segments
 - Typical Deployment is to Treat Entire Segment as the Key
 - Must be able to Tolerate Out-of-Logical Order Condition in Target
- **▶** Logical Relationships → Delete Rule Restrictions for IMS Capture
 - ✓ Logical Parents Must Have a Delete Rule of Physical or Logical
 - ✓ Logical Children Must Have a Delete Rule of Virtual

Notes on Approach

- ✓ Each Segment Maps to One (1) or More Tables
- ✓ Helpful
 → Keep Source Fields and Target Column Names Similar
- ✓ Design Considerations
 - Duration → Lower for Rehost...Higher for BI/DW
 - Strong Target Data Types will Require Additional Transformation
 - Be Careful to Avoid the 'Over Design'
- ✓ **Best Practice**: Keep Things as Simple as Possible

Redefined Fields

- ✓ Extends Analysis Timeline More Often than Not
- ✓ Requires Consult with SME and/or Research to Determine Which Field to Use
- ✓ Options for Simple Redefines:
 - Map Least Restrictive Field (PIC X)
 - Map Both Fields

05 ACCOUNT-ID	PIC 9(7).
05 ACCOUNT-ID REDEFINES ACCOUNT-N	O PIC $X(7)$.

- ✓ Options for Complex Redefines:
 - Map More Granular Field(s) → Will Require More Data Cleansing / Transformation
 - Map All Fields

```
05 ACCOUNT-ID REDEFINES ACCOUNT-NO.

10 ACCOUNT-PREFIX PIC X(1).

10 ACCOUNT-NUMBER PIC S9(7) COMP-3.
```

Redefined Segments: Full

- ✓ Redefine Generally Identified by One (1) or More Code Fields
- ✓ Each Redefine Mapped to a Separate Target Table

Code Field = Event Type

Golf	Key	Fairways	Greens	Hazards	
	Participant #	10	12	3	
		Va.	A4 Data	11:40	Duna
Baseball	Key	At Bats	Hits	Runs	
	Participant #	10	8	2	
		Key	Blocks	Digs	Kills
Volleyball	•		- -		
		Participant #	13	/	6

Redefined Segments: Partial

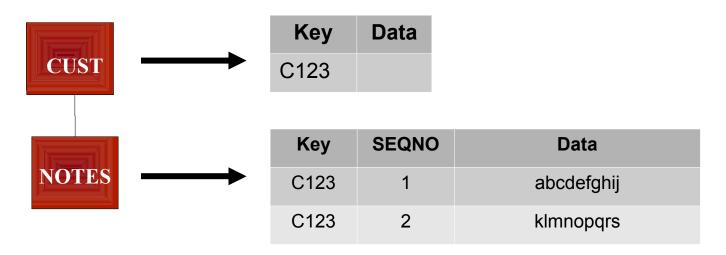
- ✓ Redefine Generally Identified by One (1) or More Code Fields
- ✓ Redefines can be Mapped to the Same Target Table if Enough Fields in Common or
- ✓ Each Redefine Mapped to a Separate Target Table

Code Field = Premise Type

Posidavia,	Key1	Key2	Addr	Pool Size	Tenants	Crop
Residential	PR#	PR_Type	123 Elm	25,000	null	null
	Key1	Key2	Addr	Pool Size	Tenants	Crop
Commecial	PR#	PR_Type	456 Ash	null	38	null
	Key1	Key2	Addr	Pool Size	Tenants	Crop
Farm/Ranch	PR#	PR_Type	456 Ash	null	null	Corn

Repeating Groups / Occurs

- ✓ Typical Candidates for Normalization Based on # Occurs
- ✓ Options:
 - Low # Occurs → Keep in Same Table as Rest of Segment
 - Map to Separate Table Requires a Sequence Number
- ✓ Be Prepared to Handle Sparse Arrays


05 ACCT-ID	PIC 9(7).
05 ACCT-CRDATE	PIC X(8).
_05 ACCT-BALANCE	PIC S9(13)V99 COMP-3.
05 ACCT-ACTIVITY OCCURS 100 TIMES.	
10 ACT-DATE	PIC 9(8).
10 ACT-TYPE	PIC X.
10 ACT-AMOUNT	PIC S9(11)V99 COMP-3.

ACCT_ID	ACCT_CRDATE	ACCT_BALANCE
12345	20120617	9000.00

ACCT_ID	SEQNO	ACT_DATE	ACT_TYPE	ACT_AMOUNT
12345	1	20120618	D	8000.00
12345	2	20120622	D	1000.00

Non-Keyed Segments

- ✓ Commonly Used for Text / Comments
- ✓ Straightforward for ETL
 - Unload in Order of Occurrence
 - Optional: Use a Sequence Number to Keep Things in Order on Target Side
- ✓ Tricky for CDC
 - Only Have Access to Parent Key(s)
 - Option 1: Set Apply Key to Include All Non-Keyed Data (exclude sequence #)
 - Option 2: Fully Materialize All Non-Keyed Segments when 1 Changes
 - Make Sure Your ETL/CDC Tool Can Handle Non-Keyed Segments

Summary

Replication is a Simple Concept, but Filled with Nuances

Best Practices are the Key to Success

For IMS Replication, there are Few Viable Options

Make Sure You Evaluate All Options

Make Sure You Include SQData in Your Proof-of-Concepts

Questions?

Where to Find Additional Information

- Email Requests
 - info@sqdata.com
- Phone Requests
 - 866-252-3575
- Website
 - www.sqdata.com

Best Practices Series Maximizing the Use of Your IMS Data with Replication

Prepared for the:

Virtual IMS User Group

5 February 2013