

# **Best Practices Series IMS to Relational Data Movement**

# Prepared for the: Virtual IMS User Group

#### 7 August 2012



# Agenda

#### Introduction

IMS to Relational: Success / Risk Factors

Data Migration: Common Analysis / Design Challenges

- ✓ Keys
- ✓ Data Field Challenges
- Redefined Segments / Fields
- ✓ Repeating Groups
- ✓ Non-Keyed Segments
- ≻ Q & A

#### Conclusion

# **About the Speaker**

### Scott Quillicy

- ✓ 30+ Years Database Experience
- Commercial Database Software Development
- Deployment of Complex Data Integration Solutions

#### Founded SQData to Provide Customers with:

- ✓ An Enterprise Class Data Integration / Replication Framework
- A Solution that Handles Both Relational and Non-Relational Data
- Technology Built Around Best Practices

### Specialization

- ✓ Database Replication
- ✓ IMS the More Complex, the Better
- Heterogeneous Database Integration
- Continuous Availability
- ✓ Database Performance





# About SQData

- -SQDATA
- "Swiss Army Knife of Data Integration Tools"

### Core Competencies

- ✓ High-Performance Changed Data Capture (CDC)
- ✓ Non-Relational Data  $\rightarrow$  IMS, VSAM, Flat Files
- ✓ Relational Databases  $\rightarrow$  DB2, Oracle, SQL Server, etc.
- Deployment of Complex Data Integration Solutions
- Continuous Availability of Critical Applications
- Data Conversions / Migrations

#### Customer Usage

- Relational and Non-Relational Data
- ✓ Data Replication Relational and Non-Relational
- ✓ ETL (Bulk Data Extracts/Loads)
- Application Integration
- Business Event Publishing
- Data Conversions / Migrations





# **Why IMS to Relational?**

- Provide Users with a Method of Querying Data Outside of IMS
- Business Intelligence / Data Warehousing
- Co-Existence with Newer Applications
- Application Migration / Replacement
- ➤ "We're Moving Off of the Mainframe"....☺



### **Success Factors**

#### Access to Subject Matter Expert(s)

- Significantly Decreases Risk
- Leverage Knowledge of Data / Business Rules
- ✓ Becoming More Difficult to Obtain with Outsourcing, Retirement, etc.

### Planning

- Required to Keep Risk at a Minimum
- Secure the Proper Personnel
- ✓ 40%: Analysis and Design
- ✓ 20%: Conversion  $\rightarrow$  Assuming a Tool is Used
- ✓ 40%: Testing / Validation

### Analysis / Design

- IMS to Relational Data Modeling
- Source to Target Mapping Specifications
- Validation Criteria / Test Plan

### Validation



# **High-Risk Elements**

#### No Access to Subject Matter Expert(s)

- Significantly Increases Risk
- Extends the Project Timeline
- Results in Guesswork for Design and Mapping
- Underestimating the Complexity of IMS to Relational

#### Big Bang Approach - Attempting to Migrate Everything at Once

- Recommend Phased Implementations
- ✓ Subsequent Migrations become Shorter: Experience & Lessons Learned

#### Fast-Tracking Planning and Analysis

- Causes Unnecessary Rework and Waste
- ✓ More Time Spent on the Front End Saves on the Back End

#### High-Transaction Workload on the IMS Side

- Applies Primarily to Application Conversion
- ✓ Performance will NOT be the Same as with IMS

# **Common Implementations**

#### Simple Conversion

- Relational Model Closely Resembles IMS Structures
- Shortest Migration Timeline
- ✓ Highest Chance for Success if SMEs are Not Available

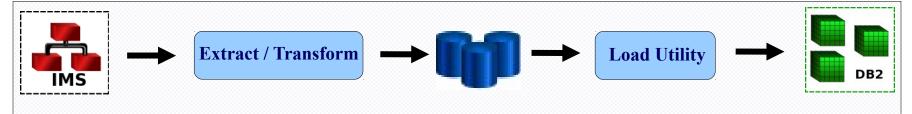
#### Business Intelligence / Data Warehousing

- Relational Models can Diverge from Existing IMS Structures
- Master Data Management (MDM) Comes into Play
- ✓ More 'Moving Parts' / Dependencies than Simple Conversions

#### Application Integration

- ✓ Relational Models are Dictated by New Application
- ✓ Usually Requires More Data Transformation: SMEs Critical

### Application Conversion


- Most Complicated Implementation
- Relational Model Depends on Extent of Application Design
- Significant Time Must be Allocated for Testing / Validation



# The Role of ETL and CDC

#### ETL (Extract, Transform, Load):

- ✓ Full Data Extract / Load
- $\checkmark$  Data Transformation Logic Defined in this Step
- ✓ Iterative Process Must be Fast and Efficient
- ✓ Should Minimize Data Landing



#### **CDC (Changed Data Capture):**

- ✓ Keeps Data In-Sync After Initial Load Allows for a Phased Implementation
- ✓ Should be Able to Re-Use Data Transformation Logic from ETL
- ✓ Helpful to be Able to Replicate Both Ways

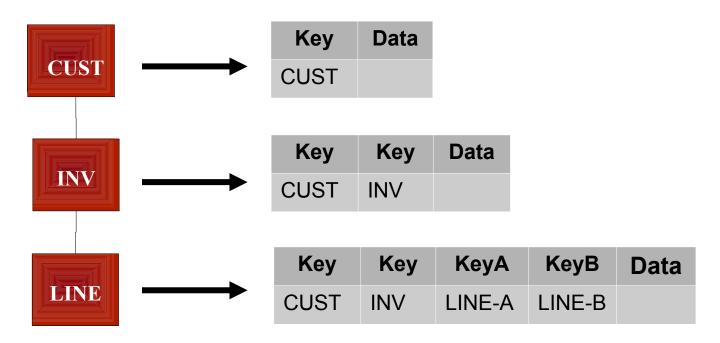


©Copyright SQData Corporation 2012 – All Rights Reserved

# Agenda

#### Introduction

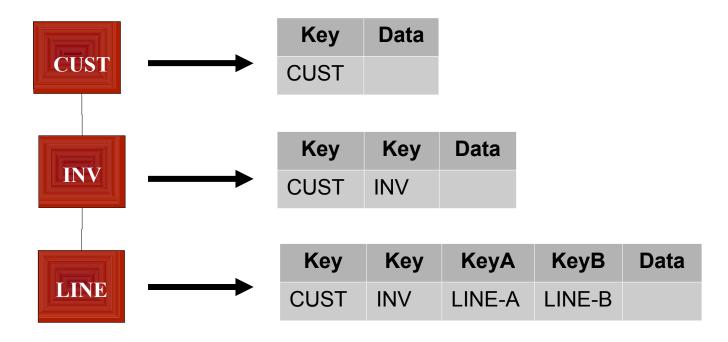
IMS to Relational: Success / Risk Factors


Data Migration: Common Analysis / Design Challenges

- ✓ Keys
- ✓ Data Field Challenges
- Redefined Segments / Fields
- ✓ Repeating Groups
- ✓ Non-Keyed Segments
- ≻ Q & A

#### Conclusion

# **Notes on Approach**


- $\checkmark$  Each Segment Maps to One (1) or More Tables
- ✓ Helpful → Keep Source Fields and Target Column Names Similar
- ✓ Design Considerations
  - Duration  $\rightarrow$  Lower for Rehost...Higher for BI/DW
  - Strong Target Data Types will Require Additional Transformation
  - Be Careful to Avoid the 'Over Design'
- ✓ **Best Practice**: Keep Things as Simple as Possible



©Copyright SQData Corporation 2012 - All Rights Reserved

# Keys

- ✓ Fairly Straightforward → IMS Key Structure Simplifies Things
- ✓ Carry Parent Keys in Dependent Tables
- $\checkmark$  Plan on Keys being Comprised of Multiple Fields with Different Data Types
  - Character, Packed, Binary



# **Common Data Challenges**

### Invalid Data

- ✓ Non-Numeric Data in Numeric Fields
- Binary Zeros in Packed Fields (or Any Field)
- Invalid Data in Character Fields
- ✓ Business Rule Violation Requires Assistance from SME

### **Dates**

- Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
- May Require Knowledge of Y2K Implementation
- Allow Extra Time for Date Intensive Applications

### Text / Comment Fields

- ✓ Usually Mapped to VARCHAR
- ✓ Stop Mapping at First Non-Printable, Non-Control Character

#### Binary / 'Special' Fields

- ✓ Very Common in Older Applications Developed in 1970s / 80s
- ✔ Generally Requires Application Specific Translation



# **Redefined Fields**

- $\checkmark$  Extends Analysis Timeline More Often than Not
- ✓ Requires Consult with SME and/or Research to Determine Which Field to Use
- ✓ Options for Simple Redefines:
  - Map Least Restrictive Field (PIC X)
  - Map Both Fields

| 05 | ACCOUNT-ID                      | PIC 9(7). |
|----|---------------------------------|-----------|
| 05 | ACCOUNT-ID REDEFINES ACCOUNT-NO | PIC X(7). |

- ✓ Options for Complex Redefines:
  - Map More Granular Field(s)  $\rightarrow$  Will Require More Data Cleansing / Transformation
  - Map All Fields

05ACCOUNT-IDPIC X(5).05ACCOUNT-ID REDEFINES ACCOUNT-NO.10ACCOUNT-PREFIX10ACCOUNT-NUMBER10ACCOUNT-NUMBER10S9(7) COMP-3.



# **Redefined Segments: Full**

✓ Redefine Generally Identified by One (1) or More Code Fields
✓ Each Redefine Mapped to a Separate Target Table

Code Field = Event Type **Event Stats** Key Hazards Fairways Greens Golf Participant # 10 12 3 Key At Bats **Hits** Runs Baseball Participant # 10 8 2 Key **Blocks Kills** Digs Volleyball Participant # 13 6 7

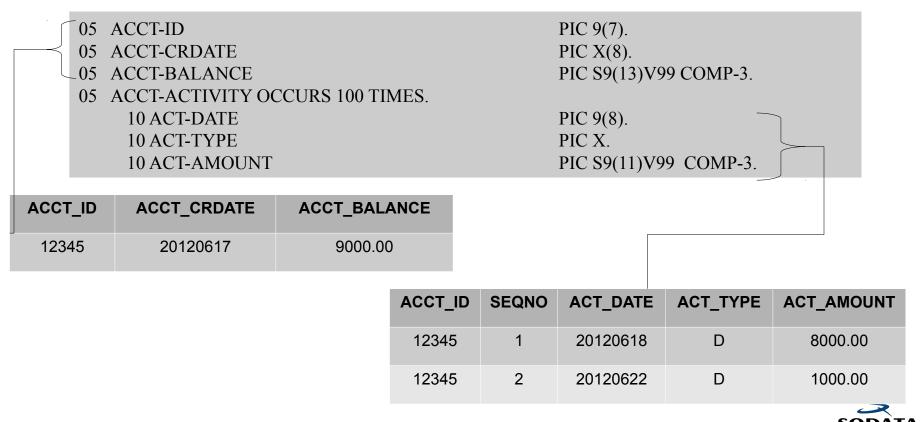
©Copyright SQData Corporation 2012 – All Rights Reserved

# **Redefined Segments: Partial**

✓ Redefine Generally Identified by One (1) or More Code Fields

- ✓ Redefines can be Mapped to the Same Target Table if Enough Fields in Common or
- ✓ Each Redefine Mapped to a Separate Target Table

Premise


Code Field = Premise Type

| Residential | Key1 | Key2    | Addr    | Pool Size | Tenants | Crop |
|-------------|------|---------|---------|-----------|---------|------|
| Kesiueituai | PR#  | PR_Type | 123 Elm | 25,000    | null    | null |
|             | Key1 | Key2    | Addr    | Pool Size | Tenants | Crop |
| Commecial   | PR#  | PR_Type | 456 Ash | null      | 38      | null |
|             | Key1 | Key2    | Addr    | Pool Size | Tenants | Crop |
| Farm/Ranch  | PR#  | PR_Type | 456 Ash | null      | null    | Corn |
|             |      |         |         |           |         |      |

©Copyright SQData Corporation 2012 - All Rights Reserved

# **Repeating Groups / Occurs**

- ✓ Typical Candidates for Normalization Based on # Occurs
  ✓ Options:
  - Low # Occurs  $\rightarrow$  Keep in Same Table as Rest of Segment
  - Map to Separate Table Requires a Sequence Number
- ✓ Be Prepared to Handle Sparse Arrays



©Copyright SQData Corporation 2012 - All Rights Reserved

# **Non-Keyed Segments**

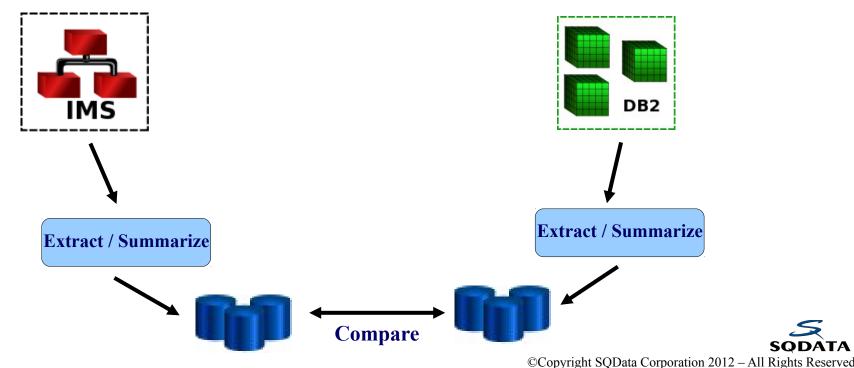
- ✓ Commonly Used for Text / Comments
- ✓ Straightforward for ETL
  - Unload in Order of Occurrence
  - Optional: Use a Sequence Number to Keep Things in Order on Target Side
- ✓ Tricky for CDC
  - Only Have Access to Parent Key(s)
  - Option 1: Set Apply Key to Include All Non-Keyed Data (exclude sequence #)
  - Option 2: Fully Materialize All Non-Keyed Segments when 1 Changes
  - Make Sure Your ETL/CDC Tool Can Handle Non-Keyed Segments

|       | Key                    | Data       |                    |
|-------|------------------------|------------|--------------------|
| CUST  | C123                   |            |                    |
|       |                        |            |                    |
|       |                        |            |                    |
|       | Кеу                    | SEQNO      | Data               |
| NOTES | <br><b>Key</b><br>C123 | SEQNO<br>1 | Data<br>abcdefghij |

# **Continuation Segments**

- $\checkmark$  Common in Older Applications
- ✓ Text / Comment Field Split Across Multiple Segments
- ✓ Options:
  - Map Each Segment Instance to a Separate Table
  - Combine and Map to Same Table (ETL Trickier than CDC for this Option)

|       | Key  | Data |            |
|-------|------|------|------------|
| CUST  | C123 |      |            |
|       | Key1 | Key2 | Notes      |
|       | -    | -    |            |
| NOTES | C123 | N1   | abcdefghij |
|       | C123 | N2   | klmnopqrs  |


|      | Key1 | Data | Notes               |
|------|------|------|---------------------|
| CUST | C123 |      | abcdefghijklmnopqrs |

### **Data Validation**

#### Does Not Have to be as Challenging as You May Think

- ✓ Human Verification  $\rightarrow$  Required During Initial Conversion
- ✓ Automated Verification → May Require Utilizing ETL / CDC Scripts
  - Counts
  - Check Sums
  - Compare Source / Target Fields with Same Attributes

#### 



# **Summary**

#### Secure Access to Subject Matter Expert(s) if Possible

- Significantly Decreases Risk
- Leverage Knowledge of Data / Business Rules
- ✓ Becoming More Difficult to Obtain with Outsourcing, Retirement, etc.

#### Don't Shortcut

- ✓ Planning
- Analysis / Design

#### Don't Overdo Database Design

- Never Ending Project
- End Result Too Complicated for Users
- Make Sure Your Conversion Tool Does Most of the Work
- Have a Reliable Method of Data Validation
- Make Sure that Your Tool Vendor has the Capability to Assist You

# **Where to Find Additional Information**

- Email Requests
  - info@sqdata.com
- Phone Requests
  - 866-252-3575
- > Website
  - www.sqdata.com





# **Best Practices Series**

# IMS to Relational Data Movement

#### 7 August 2012

