

IMS performance – taming the beast

Aurora Emanuela Dell'Anno

1 09/10/2012

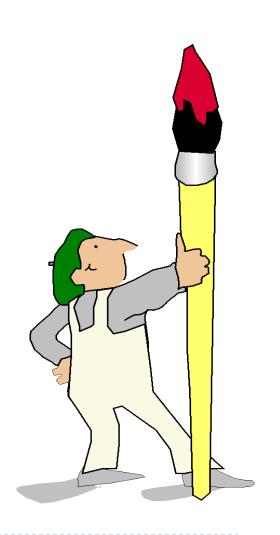
and who am I...


- Systems engineer on IBM mainframe
- Former application programmer
- > Specialisation:
- IMS
- DB2 Family

LUW

for z/OS

DB2 Server for VSE and VM


- Data Warehousing
- Performance Tuning

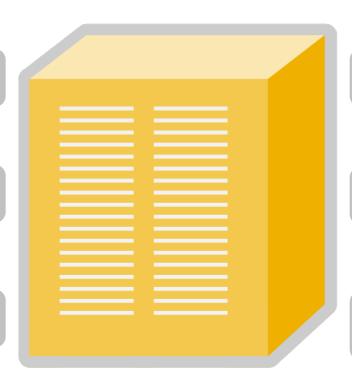

IMS performance – taming the beast

painting the picture

- ▶ The Performance Challenge
- Who told you that?
- Can you DIG IT?
- > And this is how we do it...
- A Review

The Performance Challenge

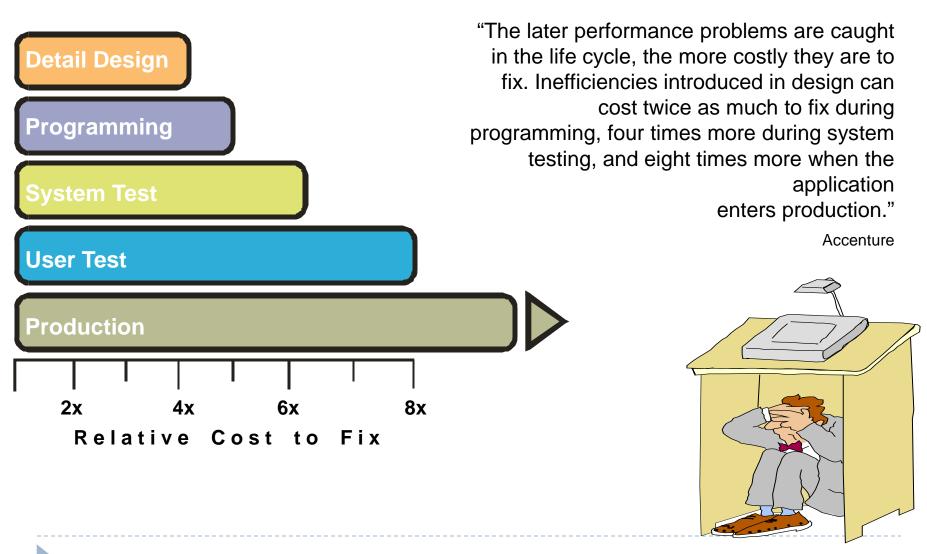
Performance is a moving target!!



New applications

Mergers/acquisitions

New system software


New technologies

CPU Creep

Defects and recurring faults

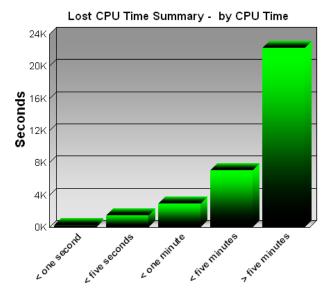
Distributed integration

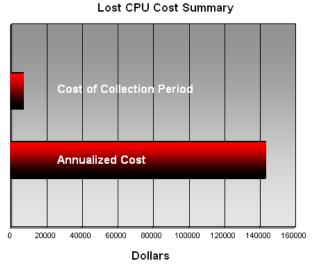
The Importance of Correcting Performance Problems Early

Impact of Ineffective Performance Tuning

When performance issues are not dealt with:

- Poor customer satisfaction
- Increased processing costs
- ✓ Missed SLAs penalty charges
- Lost business due to poor reputation
- Inability to scale to business requirements and growth


	Cost of		Design	Development	Testing Production		Resolution cost for	
problem resolution		1x	2x	10x	50x	100x	100 defects at x = \$100	
Firefighting	% resolved	0%	0%	0%	0%	100%		
	cost	\$0	\$0	\$0	\$0	\$1,000,000	\$1,000,000	
Performance verification	% resolved	10%	0%	0%	60%	30%		
	cost	\$1,000	\$0	\$0	\$300,000	\$300,000	\$601,000	
Performance- driven	% resolved	10%	40%	25%	20%	5%		
development	cost	\$1,000	\$8,000	\$25,000	\$100,000	\$50,000	\$184,000	


Source: Forrester Research, Inc.

Impact of Ineffective Performance Tuning

	Lost CPU Time Summary									
> five minutes		22,236.15	13 Faults	\$4,632.53		65.4%	6,036.36			
	CPU TIME	Lost CPU Time		Lost CPU Cost	Pct of lotal	worst Case				
	< one second	257.94	4429	\$53.74	0.8%	1.00				
	< five seconds	1,482.04	645	\$308.76	4.4%	5.00				
	< one minute	2,939.66	159	\$612.43	8.6%	56.84				
	< five minutes	7,091.06	54	\$1,477.31	20.9%	290.80				
	> five minutes	22,236.15	13	\$4,632.53	65.4%	6,036.36				
	Totals:	34,007 seconds	5,300	\$7,084.76		6,036 seconds				

Lost CPU cost for Sample: \$7,084.76 Annualized Lost CPU cost: \$143,663.20

The Performance Management Capability Maturity Model

Where is your IMS?

Level 4
Disciplined

Level 3 Process oriented

Level 2 Proactive

Continually evaluate and improve your performance management program

Establish accountability for application performance. Track, measure and report on the *APM* program

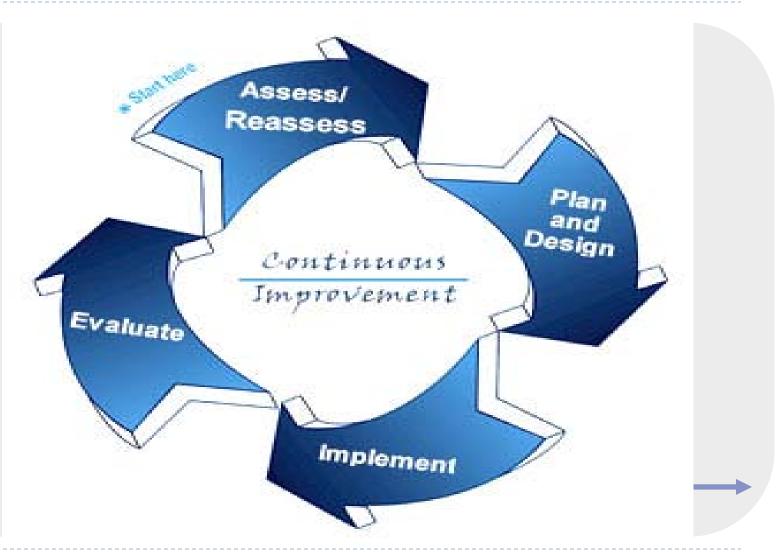
Define processes for performance evaluation at established checkpoints

Reclaim production resources through repeatable projects

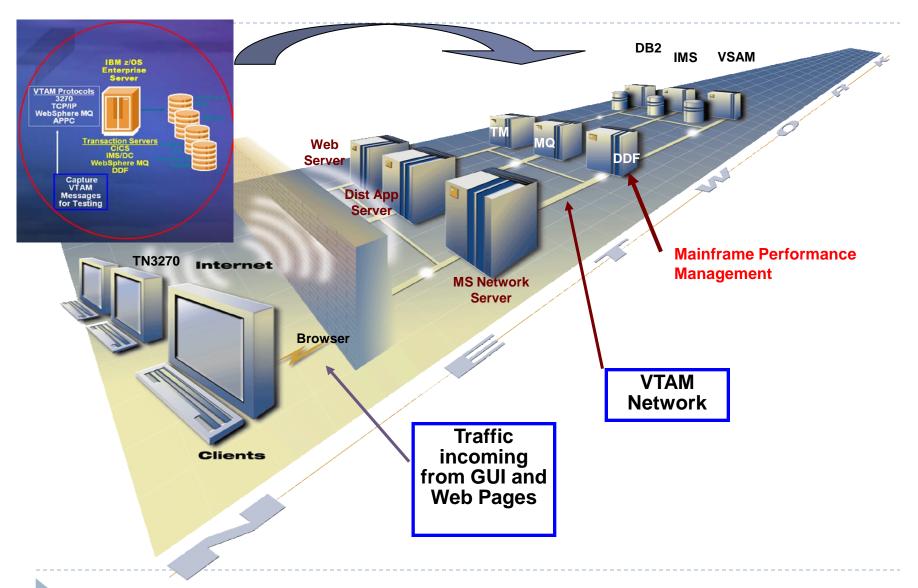
Respond to production crises

Organisational Benefits

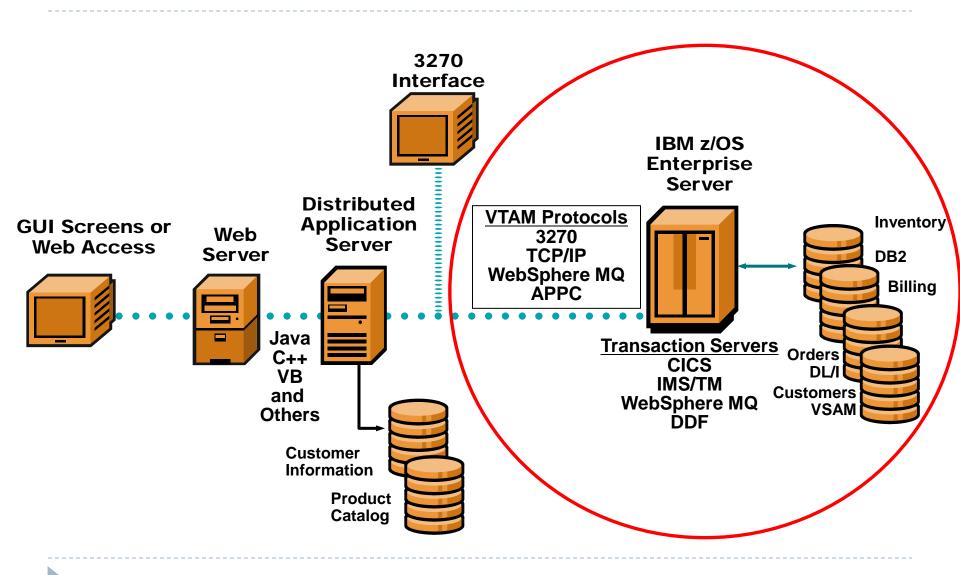
The Performance Management Capability Maturity Model



Level 4
Disciplined


Level 3 Process oriented

Level 2 Proactive



Let us know our systems...

Let us know our systems...

And what is IMS Performance?

- When we think about system health, we think about:
 - Efficiency
 - Code path length
 - Speed
 - Lack of bugs in code
- We also consider how easy new features are to use, whether new functions perform well, and how fault tolerant is our system

An overall health measure for any operating environment, consists of a combination of all these

Have I got a problem?

"The performance of an IMS system is directly related to a number of internal variables.

These variables can be found in the z/OS® operating system, in IMS/TM, in IMS/DM, in the application, or in the hardware.

External variables include the network and the physical infrastructure of your private network.".

RedBook IMS Performance and Tuning Guide http://ibm.com/redbooks

Getting it straight

A performing system

- CPU and DASD capacity planning
- many tools for tracking and predicting need for future hardware upgrades
- High-performing system = healthy system

IS NOT HEALTHY IF...

- No log backups exist
- Most DBs are not registered in DBRC
- You are running IMS Version 6
- Maintenance is current to May 2008
- CPU is running at 100 percent capacity all day, every day

"Most technicians and managers equate health with performance; specifically, an IMS subsystem is healthy if some performance measure or metric remains high

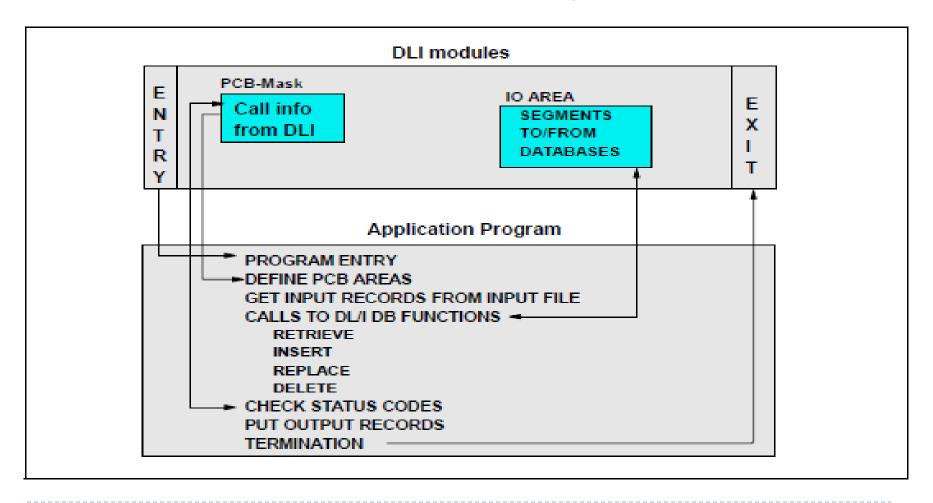
Organisations that simply equate health = performance spend lots of time on performance tuning and reacting to real or perceived performance issues

This deals with SYMPTOMS rather than causes"

The goal of any IMS installation

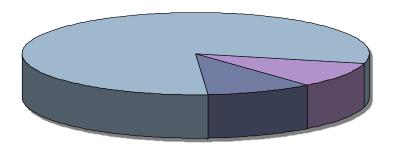
Effective use of system resources!

- ▶CPU cycles
- ▶real storage
- I/O devices
- Is this goal met?
- What specific performance problems exist in the system?


Let us examine the current use of resources

And then, when we implement any changes, we must re-evaluate the use of the resources again

Why Tune IMS Applications?


Structure of an IMS application program

Why Tune IMS Applications?

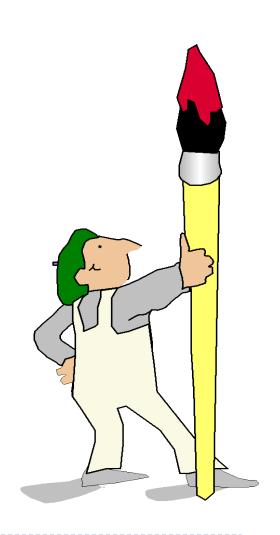
APPLICATION DESIGN 80%

- Normalization
- Physical database design
- DL/I design and quality control
- Thread processing
- Dataset implementation
- Utility processing
- Etc...

IMS SUBSYSTEM 10%

- DBRC
- Shared queues
- LOG processing
- DB2 connections
- Etc...

MVS SYSTEM 10%


- Sub-system definition
- I/O configuration
- Etc...

IMS performance – taming the beast

painting the picture

- > The Performance Challenge
- Who told you that?
- Can you DIG IT?
- > And this is how we do it...
- A Review

Why and how to monitor Performance

What Is The Value Of Perspective?

What Is The Value Of Perspective?

Performance Monitoring: what we look for

Cost Effective

Easy-to-Implement

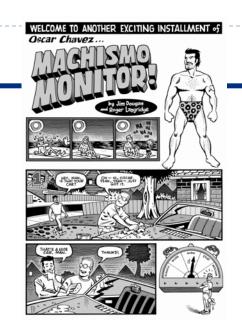
High Quality - Reliable

Repeatable – Reusable with minimum effort

Manageable

Production-friendly

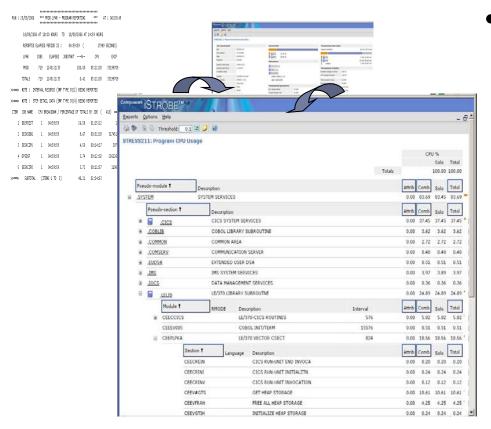
Methodology Independent


Comprehensive Information

- > Performance Metrics
- > Baseline Information

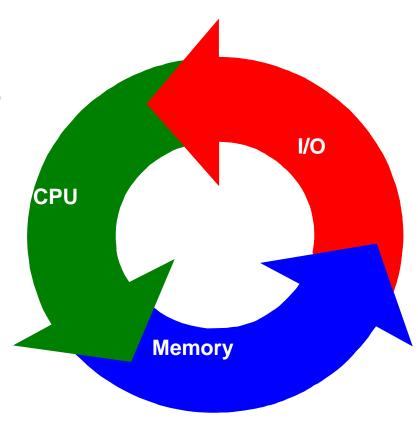
World of Monitoring

- MVS tuning
- CICS tuning
- DB2 tuning
- **Efficient SQL**
- Diagnostic tools:
 - Sysview
 - MAINVIEW
 - TMON
 - IMS PA



Whatever it is, remember TRACES!

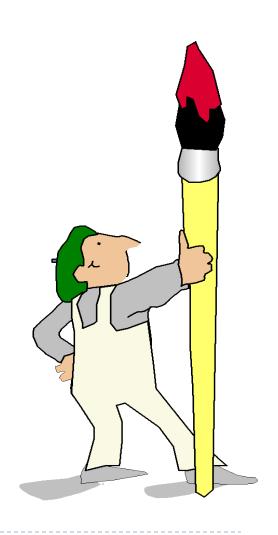
- IMS Monitor trace, PI trace, PSB trace, and Fast Path trace provide a wealth of information:
 - Elapsed time and CPU time
 - Buffer pool statistics
 - Wait counts and times (I/O, locks, latches, etc)
 - Region information
 - DL/I count information
 - DB processing



About IMS Traces and Monitors

Recommended regular reports

- IMS Monitor
 - Buffer pool statistics ,general reports, Region/ Program/Communication summary, I/O details, VSAM Buffer Pool reports
- KBLA / DFSERA10
 - Log data
- DFSILTA0
 - Log transaction analysis
- DFSKMSC0
 - MSC link response times
- DBCTL
- IRLM locks
- IMSplex information
- IMS Connect information



The Logical Tuning Approach

IMS performance – taming the beast

painting the picture

- > The Performance Challenge
- Who told you that?
- Can you DIG IT?
- > And this is how we do it...
- A Review

Can you DIG IT?

Sub-system and application tuning...

Check this out for a healthy IMS Sub-system

Basically, these are the main things to be monitored ANYWAY, even if nobody touches the applications...:

SMP maintenance	includes looking at all the holddata for stuff that has to be rebound (usually every 3-6 months)				
Bufferpool / message queue pool	if you have enough memory to just make them big, check every couple of months				
IMS parameters	some people don't ever change them, but number of log buffers and checkpoint frequency are 2 that can have major impact on performance				
backups	to make sure they run and run correctly – OLDS, SLDS, trace and monitor data				

Check this out for a healthy IMS Sub-system

1. DR

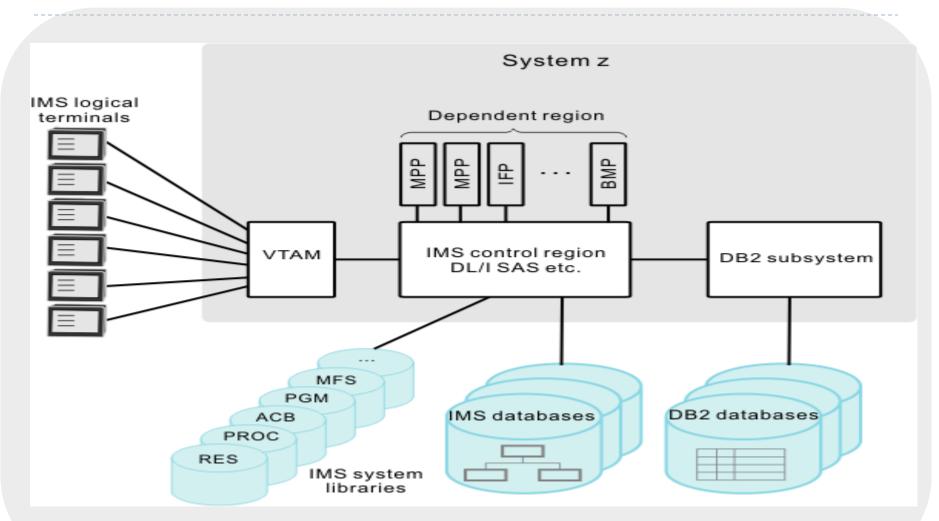
- Co-ordination of logs and IC
- Existence of a D/R plan
- Backups

2. Growth

- Measurement of percent busy
- CPU-bound vs. I/O-bound
- Quantity of traffic through DDF
- Transaction throughput and DL/I calls (query vs. update)
- Logging activity
- Memory activity
- Current bottlenecks

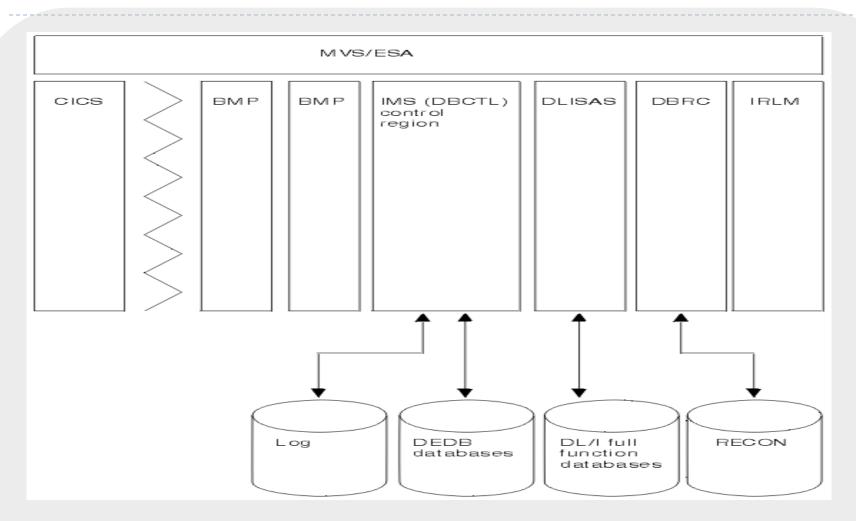
Check this out for a healthy IMS Sub-system

4. Stability


- Maintenance process (version, currency)
- Regular upgrades
- Software maintenance strategy
- People
 - Business skills Time management, meetings, communications
 - Problem solving methodology
 - Education, training, certification
- Process monitoring
 - Documentation: update, upgrade, centralise, review
 - Process measurement

5. Maturity

CMM Level



The Mysterious and Complex World of IMS

Typical structure of an IMS online system environment

The Mysterious and Complex World of IMS

CICS-IMS DBCTL environment

WLM Analysis

First degree of separation:

long running bad transactions from transactions that run quickly

Then:

transactions that run quickly into high, medium, and low volume transactions

Service Classes definition:

 for all region types based on transaction class rather than transaction codes

Too many service classes can produce unpredictable results

Response times:

- average host response times for all workloads
- what % of workloads will meet the average response times (SLA)?
- set up the workload using response time % and performance goals

Database Performance agents

- Which access method?
 - HISAM / HD, (P)HDAM / (P)HIDAM, HALDB, OSAM / VSAM
 - ▶ If you have HALDB: Partition criteria Key range is generally appropriate
- Block sizes, CI sizes, and record sizes
- Free space
- Randomization parameters: randomization routine, RAPs, RAA, bytes parm
- Fixed length / variable length segments: what type of data goes in them?
- Pointer options: pointer maintenance
- SCAN= parameter on DATASET statement: free space searches
- Multiple data set groups: do you need them?

Database Performance agents

- Compression: storage, I/O and CPU usage considerations
- Encryption: do you need it?
- Secondary indexes: unique keys, duplicate data fields, shared indexes
- Fast Path performance considerations: VSO, Field calls, Buffers
- Non-recoverable databases
- OSAM or VSAM? OSAM is better with IMS but requires attention
- GSAM performance: PROCOPT, BUFNO, DCB=OPTCD=C
- REORG strategy

Transaction Manager Performance agents

- Call scheduling options: processing, classification, queuing
- Program load options: COBOL, DBLDL, LE, LLA
- TRANSACT macro parms: MAXRGN, SEGNO, PARLIM, PRTY, PROCLIM

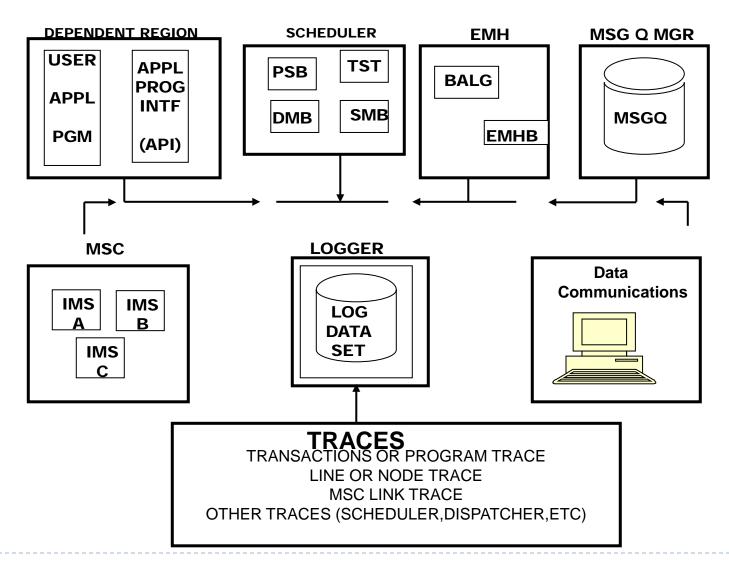
IMS TM Performance agents: IMS Parameters

Buffer Pools

- for Fast Path: DBBF, DBFP, DBFX
- Dynamic Pool manager (DFSPOOL) thresholds
- Message format BP parms

IMS I/O Activity and Performance

- I/O sub-system performance
- IMS Scheduling and Application I/O performance
- ECSA / CSA usage
- Dependent region PST
- Message Queue buffers
- RES PSBs and DMBs, page fixing


IMS Locking Activity

- IRLM lock activity, Claim and Drain activity
- Lock contention and Lock escalation
- IMS Logging
 - Number of Togs, single/dual logging, log I/O activity and checkpoint activity
- DBRC

DBCTL Performance agents

- DFSPZPxx
 - for Fast Path: FPBUF
 - Overflow buffers
 - Thread parms
- Variable pool allocation parms
- DFSPBxxx
 - Thread parms
 - Storage pool management
- IMS Logging
 - Number of logs, single/dual logging, log I/O activity and checkpoint activity

Logging and IMS

IMS Logging Considerations

- Every task in IMS must log
 - IMS has a physical logger and a logical logger
 - Each of these functions has its own TCBs
 - Two types of logs:
 - write ahead data set (WADS)
 - online log data set (OLDS)

A large IMS subsystem can perform enormous amounts of logging

- on CPU with 64-bit support (z/Architecture), log buffers are page fixed above the 2 GB line
- For this, OLDS block size must be multiple of 4096 (without exceeding half track value)
- With previous recommended block size of 26 624 we cannot use storage above the line
- If you increase your log buffers, careful with WADS (size of the WADS must be increased)
- Ensure the correct number of OLDS buffers are defined in DFSVSMxx

IMS Log Record format

Log record format

LL 2 Bytes	ZZ REC 2 Bytes TYPE 1 Byt			STCK 8 Bytes	LSN 8 Bytes	
---------------	---------------------------------	--	--	-----------------	----------------	--

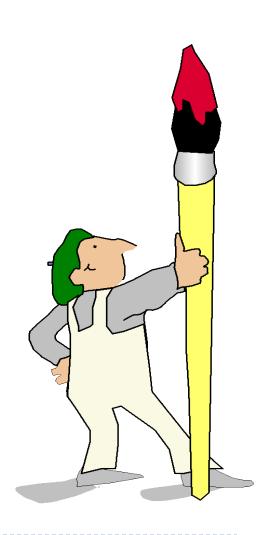
LL = Variable length field

ZZ = Usually binary zeroes

STCK = Binary value for hardware clock

LSN = Log sequence number

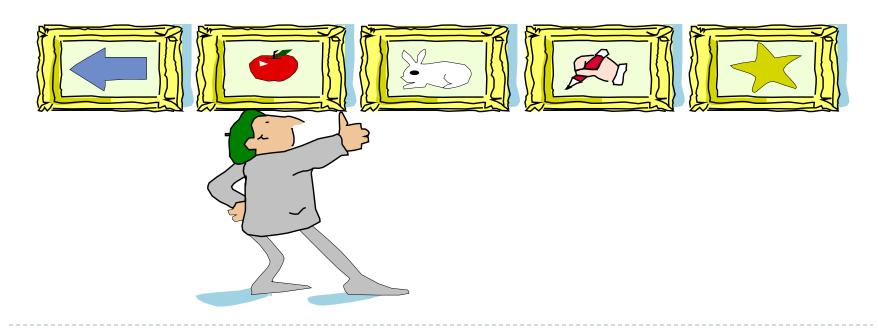
Record Type and subtype show type of log record.


Other IMS Performance agents

- DBRC RECONS
 - Dataset definition
 - Dataset contention issues
 - GRS
 - Dataset maintenance
- SMF and RMF
- Batch applications
- IMS Utilities:
 - Change accumulation, pointer checker, image copy, recovery utilities, etc.

IMS performance – taming the beast

painting the picture


- The Performance Challenge
- Who told you that?
- Can you DIG IT?
- And this is how we do it...
- A Review

And this is how we do it

Re-writing the process

The tools we need to check our IMS's health

Tick-boxes:

- DR practices
- Capacity Planning
- Proactive, predictive, self-healing
- Stability
- Maturity

2. Tuning knobs:

- Sub-system configuration
- Catalog and directory
- Access Paths
- Data: volumetric and configuration
- Process objects

The next steps: Autonomic Computing

- Collect multiple sources of event, threshold, and statistical data
- Consolidate, analyse, and report data using performance management tools
- Use correlations and recommendations available from monitoring software and other sources
- 4. SCRIPT!
- 5. Integrate components for dynamic management

Performance monitoring Strategy:

transaction and application profiling

Stage 3

Development:
Definition
of Performance

Stage 2

Development:
Establish Performance Gateway

Contained IT
Performance Costs

Production:

Control & Avoid Application Creep

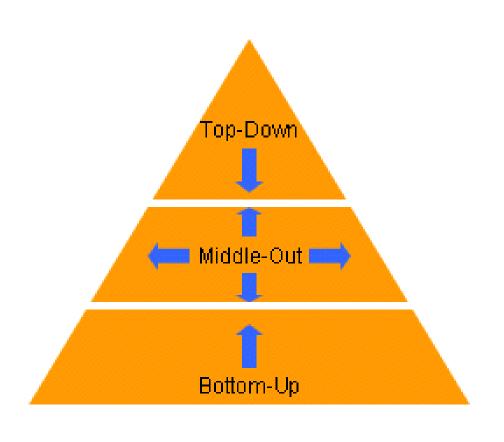
Stage 1

Production: Establish Optimal Resource Usage

Stage 4

Production:
Health Check
Service

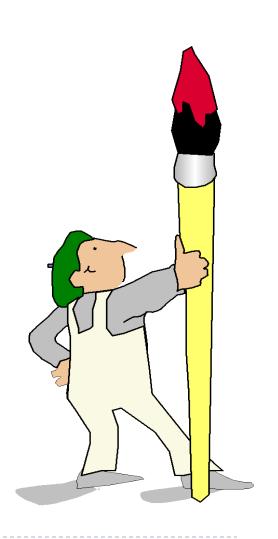
- ✓ The objectives of performance testing are defined for specific applications/transactions
 - Every application/transaction will have its own objectives, and its own limits, according to the use which is made of it


The holistic approach: what is at stake?

Quality

- User benefits
 - Service contracts quality assurance
 - User and customer satisfaction

Budget

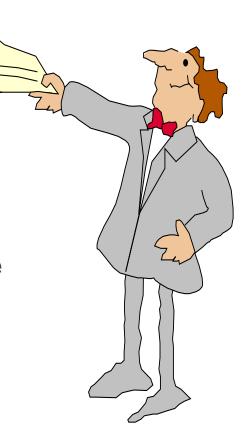

 Profitability of the data-processing investment

IMS performance – taming the beast

painting the picture

- The Performance Challenge
- Who told you that?
- Can you DIG IT?
- And this is how we do it...
- A Review

In short - a review


The ultimate holistic approach

- 1. Define performance objectives & metrics
- 2. Create monitoring, testing and tuning procedures
 - 3. Implementation practice again from the top!

Read the books!!!!!

- http://www.ibm.com/ims
- http://www.redbooks.ibm.com
- Manuals and Redbooks:
 - IMS Primer
 - IBM IMS Version 12 Technical Overview
 - Transaction Processing: Past, Present, and Future
 - IMS Performance and Tuning Guide
 - ▶ DBRC In Practice from www.bmc.com
 - http://www.fundi.com/virtualims/index.htm
 - ► IMS-L: IMS-L@IMSLISTSERV.BMC.COM

With special thanks to: S. Larsen, P. Armstrong, J. Janttl, P. Bruni, D. Viguers, P. Sadler, D. Kohli, T. Michielse, E. Maxwell