
1

FROM LEGACY TO LEADING EDGE

Creating CICS APIs 
Without Coding

Glenn Schneck, Principal Technical Architect



sources:  programmableweb.com, venturescanner.com

API Evolution & Revolution

Application Programming Interface (API) is a set of subroutine definitions, protocols, and tools for building application 
software. It is a set of clearly defined methods of communication between various software components. ~ Wikipedia



Source:  IBM

API Economy for Digital Enterprises



The “Connected” Mainframe



z/OS Connect Enterprise Edition

CICS Transaction Gateway (CTG)

CICS Web Services (CWS)

IMS CONNECT

HOSTBRIDGE

TN3270

SQL to Data

?

Mainframe
Connectors

Business
Services

Types of Mainframe “Connectors”



Transaction APIs

GetSavng{}

GetChkng{}

GetCredit{}

GetMortg{}

GetPart{}

GetDesc{}

GetInv{}

GetOrder{}

Single

Transaction

APIs

LOW-LEVEL

CODING ZONE



Transaction

APIs

GetSavng{}

GetChkng{}

GetCredit{}

GetMortg{}

GetPart{}

GetDesc{}

GetInv{}

GetOrder{}

Composite
APIs

GetCust{}

GetStatus{}

ListCust{}

Composite APIs



Mainframe API Challenges

REALITY / NEED THE BAD THE UGLY

All data structures 
supported

Some structures don’t 
map well

Comp-3, binary , OCCURS 
DEPENDING ON,
REDEFINES

Copybook fields exposed 
as service inputs/outputs

Names in COBOL may be 
cryptic and need to be 
renamed

Blank When Zero,
Program control fields 
with no external value

Expose existing programs 
without changes

BMS map macros that set 
input message field 
values



Mainframe API Challenges

REALITY / NEED THE BAD THE UGLY

Existing transactions 
exposed as REST or SOAP

A transaction may be too 
fine grained

Multiple transaction
dependencies

Programs that return 
multiple output formats 
designed for terminals

Data may be too 
convoluted to use in a 
service

Volume of data may be too 
large to return to a 
distributed client

PFKEY = TRANCODE Maybe need multiple
transactions in sequence



Mainframe API Challenges

REALITY / NEED THE BAD THE UGLY

Combine transactions in 
one service

May not work well with 
others

API’s that run for 
minutes

Conversational 
transactions

Long running 
conversations may be 
long running API’s

No understanding of 
conversational impact,
rollback



Transaction APIs

GetSavng{}

GetChkng{}

GetCredit{}

GetMortg{}

GetPart{}

GetDesc{}

GetInv{}

GetOrder{}

Single

Transaction

APIs

LOW-LEVEL

CODING ZONE



Business API

Intelligent Orchestrated
Workflow

API Orchestration for Mainframe Integration



GT Ivory® API Orchestration

Intelligent Composite API:
• Multiple transactions
• Multiple data sources
• External web services and APIs
• Conditional Logic
• Error handling
• Governance and security
• Drag-and-drop (no coding) SDK
• Shared ‘business’ APIs across 

consumers
• No ‘low level’ coding and 

management of  mainframe 
connectors

• Easy, fast, and agile development



GT Ivory - Atomic & Composite APIs

Ivory API
REST / SOAP

Mobile 
Apps

Web Portal
BI Tools

Other Apps

App 
Server

ESB

Other

API 
Manager

Ivory API
REST / SOAP

Ivory API
REST / SOAP

Online Transaction

Online Transaction

IBM Mainframe
(z/OS or VSE)

External 
Services / 

APIs

Custom Routine

Online Transaction

IBM Mainframe
(z/OS or VSE)

Custom Routine

Ivory APIs can be designed as a single transaction execution or as a composite workflow that invokes
multiple online transactions, external services and other APIs, and custom routines.   



GT Ivory Examples &
Demonstration



GT Ivory On and Off Mainframe Deployment Options

GT Ivory
Server

Online
Transaction

Region

GT Ivory
Server

OS Started Task

GT Ivory
Server

IFL
(Linux on z)

Windows/Java or Linux Server



GT Ivory®
API 

Orchestration

Online 
Transactions

CICS
IMS

IDMS
IDEAL

NATURAL

z/OS Connect

CICS Transaction Gateway (CTG)

CICS Web Services (CWS)

IMS CONNECT

Other (e.g., HOSTBRIDGE)

REST / SOAP

TN3270

API
Consumers Mainframe

Connectors

IBM Mainframe
(zOS or VSE)

Direct SQL to Data

DB2, VSAM, IMS 
DB, IDMS DB, 
DATACOM,

ADABAS

API 
Manager

Making Everything Work Together

z/OS Connect

Application Server

ESB / MQ

Web Service

Data Virtualization

Data Integration / ETL

BI Tools

No Coding!



Leading Luxury Sports Car Manufacturer

Challenge

 One of the world’s best known brands in luxury, performance sports cars

 Strive for ‘maximum output with minimum input’

 Wanted web-access to its mainframe-based specification and configuration system

 Current interface was based on IBM OS/2 operating system with 3270 ‘green-screens’

 Replace and web enable 3270-based vehicle specification and configuration system

 A tool that could interact with the manufacturing and inventory systems

 Give prospects the ability to custom design and interact online with newest models

Needs



Results

No Additional  

MIPS Required For  

Processing

Less than 1 Day to  
Develop, Publish and  

Use Web Services

No Programming or  
Additional Personal  

Required

Secure Transfer of  
Information Readily  

Available



Multi-lines Mutual Insurance Company

 Operations in 49 States

 2,200+ Employees

 $1.6 Billion in Premium

 Make legacy services available to new composite applications

 Developers spending 50%+ time on “plumbing”

 Slowing development efforts

 Reuse opportunities lost

 Refocus on the business problem

 Expose and consume Web Services

 Reuse legacy when possible …or build new

 Active approach to mainframe SOA

Challenge

Needs



Results

Serving 10
Applications Across 7  

Business Areas

$
Strong ROI

Within 1 Year

Processes over 400K  
Ivory-based Web  

Service Requests / day

Only 2 Hours of
Training Per User



Leading Aptitude Testing Company

 U.S headquartered, non-profit assessment vendor

 Develop and administer 50 million aptitude tests annually

 180 countries —9,000 locations

 Immediate credit approval

 Ability to process funds for payment

 Ability to track candidate’s scheduling, testing, and scoring

 Two large back-end online systems

 Both required “real-time” communication with third-party credit card processor

 Both were green screen systems and would use same interface

 Neither coded to support encryption, SSL security and WS security tokens — a requirement for credit card
processing

Challenge

Needs



Results

Met  
aggressive  
timeline

Added encryption, WS  
security (per PCI  

Compliance)

Strong ROI  

80% Reuse

Created  
“common”  
interface



West Coast County Government

Challenge

Needs

 Mainframe-based Criminal Justice Information System (CJIS) developed in early 1980’s

 Support for Sheriff, Police, Prosecutor, District Attorney, Courts, and other law  
enforcement

 Over 100,000 transactions per day

 Multiple law enforcement systems across County

 CJIS and Jail Management System, other systems off-mainframe

 Migration of CJIS to new COTS system

 Consistant exchange of information regarding bookings and other data across systems

 Pull data generated on 3270 screens from the legacy system



Seamless  
integration of  
systems

Access to data from CJIS  
transaction screens and  
directly from databases

Greater efficiency  across

law enforcement  entities

Results



Mainframe APIs – The Easy or The Hard Way?

Lots of Low-level Coding No Coding

A web service in several days… Or in just a few hours or even minutes!



Glenn Schneck
Principal Technical Architect

GT Software

gschneck@gtsoftware.com

Website:

www.gtsoftware.com

Questions?

mailto:gschneck@gtsoftware.com

