
Access Computing Education

1

C I C S

T R A N S A C T I O N

D E B U G G I N G

Access Computing Education

1

O B J E C T I V E S

Access Computing Education

• What is the problem?

• Where is the problem?

• What program is affected?

• What external areas can be interrogated?

• What is available for diagnostic purposes?

1.1 CONSIDERATIONS

Access Computing Education

All transaction abends are accompanied by a 1-4 Abend Code

The middle 2 characters identify which module issued the abend

The are over 300 Abend codes

ASRA - Program Interrupt

 SR issued from the System Recovery Program

AICA - Program Loop.

 IC issued from the Interval Control Program

ABM0 - BMS unable to locate the Map

 BM issued from the Basic Mapping Support Program

AEIM - Notfound condition

 EI issued from the Exec Interface Program

1.1 CONSIDERATIONS

Access Computing Education

WHAT IS THE PROBLEM?

A Program Check or Interrupt in an application causes CICS to

issue an abend code 'ASRA'.

A Program Check can take various forms:

• Arithmetic Operation of undefined fields.

• Executing outside of the Address Space/Region.

• Executing invalid instructions.

•

1.1 CONSIDERATIONS

Access Computing Education

WHERE IS THE PROBLEM?

A Program Check is the result of user code being interrupted.

In order to answer the questions, we need to know three things:

• At what address is the program loaded?

• Is the program load address and the program entry address

 the same?

• At what offset in the program, did the interrupt occur?

•

1.1 CONSIDERATIONS

Access Computing Education

WHERE IS THE PROBLEM?

The PROGRAM STATUS WORD (PSW) will contain the

address of the NEXT instruction, that would have executed.

The Transaction Dump module index, located at the end of the

dump, will show both the Load address and the Entry address.

The Linkedit Map from the Compile and Link output will also

show the Load module structure, all the modules that combine to

create the Load module that is in error.

•

1.1 CONSIDERATIONS

Access Computing Education

The PSW is 8 bytes long. It can be found on the first page of the

transaction dump

An additional 8 bytes are also included

These 16 bytes are divided into 4 words

• Word 1 Contains System control information

• Word 2 Contains the address of the NEXT instruction

• Word 3 First 2 bytes are length of instruction that failed

• Last 2 bytes contain the type of exception

• Word 4 Unused for our purposes

1.1 CONSIDERATIONS

Access Computing Education

WHAT PROGRAM IS AFFECTED?

The Transaction Dump will display on the first page the name of

the Program, CICS considered to be currently executing

The storage occupied by this program will be printed in the dump

1.1 CONSIDERATIONS

Access Computing Education

WHAT EXTERNAL AREAS CAN BE INTERROGATED?

• Any messages on the affected terminal.

• Any messages on the System Log/Console.

• Any messages on the CICS Log.

• Any unusual circumstances surrounding the execution of the

 Program

1.1 CONSIDERATIONS

Access Computing Education

WHAT IS AVAILABLE FOR DIAGNOSTIC PURPOSES

• The Compiler listing

• The CEEMSG output

• The AMBLIST utility output

• The Transaction Dump

• The Dump utility DFHDU660/DFHDU670

1.1 CONSIDERATIONS

Access Computing Education

CICS demands that all programs be written as QUASI-Reentrant,

CICS uses a technique called MULTI-THREADING.

To achieve this, when the program is initiated the programs

Working-Storage areas are kept outside of the program.

This gives all tasks using the same program, their own copy of

Working-Storage areas.

1.2 BACKGROUND

Access Computing Education

The utility DFHDU660 is used to print the Transaction Dumps

//TRANDUMP EXEC PGM=DFHDU660

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//DFHDMPDS DD DSN=CICS.DFHDMPA,DISP=SHR

//DFHTINDX DD SYSOUT=*

//DFHPRINT DD SYSOUT=*

//SYSIN DD *

 SELECT TYPE=OR

 TRANID=ABCD

 END

/*

//

 SELECT TYPE=SCAN

 END

1.1 CONSIDERATIONS

Access Computing Education

Transaction abends send abend messages to the CICS JES Log

DFHAP0001 CICSNAME An Abend (Code 0C4/AKEA) Has

OCCURRED AT OFFSET X'00001030' IN MODULE

CICSBRSJ

This can provide a good understanding of where the problem is

1.1 CONSIDERATIONS

Access Computing Education

CICSTS42 --- CICS TRANSACTION DUMP --- CODE=ASRA TRAN=BRSJ ID=1/0010 DATE=13/09/18 TIME=10:46:43 PAGE 1

SYMPTOMS= AB/UASRA PIDS/5655S9700 FLDS/DFHABAB RIDS/CICSBRSJ

CICS LEVEL = 0670

PSW & REGISTERS AT TIME OF INTERRUPT

PSW 078D2000 A0910B30 00060007 00000000

REGS 0-7 1FB3A05C 1FB38E68 1FB3A110 1FB3A1A0 001400D0 1F941ACC 1F941A80 00000000

REGS 8-15 1FB3A190 1FB39F20 20910154 2091055C 20910124 1FB38D20 A0910B0A 00000000

EXECUTION KEY 8

The transaction was in Basespace mode

REGISTERS AT LAST EXEC COMMAND

REGS 0-7 1FB46DFC 1FB473C8 1FB35990 1FB473F4 1FB33B30 1FB46DE8 1FB46DFC 1FB46DF8

REGS 8-15 1FB46DEC 1FB473DA 00545360 0054635F 1FB37E58 1FB47330 805455F6 00000000

Transaction environment for transaction_number(0000050)

 transaction_id(BRSJ) orig_transaction_id(BRSJ)

 initial_program(CICSBRSJ) current_program(CICSBRSJ)

 facility_type(TERMINAL) facility_name(L702) Start_code(TO)

 netname(LCL702) profile_name(DFHCICST)

 userid(CICSUSER) cmdsec(NO) ressec(NO)

 spurge(NO) dtimeout(0000000) tpurge(NO)

 taskdatakey(USER) taskdataloc(BELOW)

 twasize(00000) twaaddr()

 remote(NO) dynamic(NO)

 priority(001) Tclass(NO) runaway_limit(0005000)

 indoubt_wait(YES) indoubt_wait_mins(000000)

 indoubt_action(BACKOUT) cics_uow_id(C8FE07A04D11B001) confdata(NO)

 system_transaction(NO) restart_count(00000) restart(NO)

TASK CONTROL AREA

00000000 0005C780 00000001 1F9EB570 0004FB48 1F943A50 00000000 00000000 00000060 *..Y..............m.............-* 0005E700

00000020 0000050C 00000000 00000000 9F15FA20 1F99B000 00000000 00000000 00000000 *.................r..............* 0005E720

00000040 00000000 00000000 00000000 00000000 00000000 00000000 00000014 00004000 *.............................. .* 0005E740

00000060 00C3C5E2 C5E2D9C1 00000000 00000000 00000000 00000000 00000000 00000000 *.CESESRA........................* 0005E760

00000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 0005E780

000000A0 LINES TO 000000C0 SAME AS ABOVE

.

TASK CONTROL AREA (SYSTEM AREA)

000000000 00000000 00000000 00000000 00000000 0000081C 096FDD7C 00000056 00000000 *.....................?..........* 0005C780

000000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 0005C7A0

000000040 09F118B0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.1..............................* 0005C7C0

000000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 C1E2D9C1 *............................ASRA* 0005C7E0

1.2 BACKGROUND

Access Computing Education

CICSTS42 --- CICS TRANSACTION DUMP --- CODE=ASRA TRAN=BRSJ ID=1/0010

DATE=13/09/18 TIME=10:46:43 PAGE 127

----- MODULE INDEX -----

LOAD PT. NAME ENTRY PT LENGTH LOAD PT. NAME ENTRY PT LENGTH

LOAD PT. NAME ENTRY PT LENGTH

1F7AD100 DFHTOR 1F7B2E5C 0000F1F8

1F7BC300 DFHWBIP 1F7BC300 000014C0

1F7BD800 DFHEJITL 1F7BD828 00000338

1F7BDC00 DFHZXRE 1F7BDD14 00000F70

1F7BF000 DFHZCQ 1F7FEE94 000408D8

1F990000 DFHTAJP 1F990114 000009D8

1F9AC000 DFHACP 1F9AC114 00001848

1FA22000 DFHKCRP 1FA22114 000007D0

1FAD8000 DFHTFP 1FAD8114 00002558

1FC00000 CEEPLPKA 1FC00000 002020D0

1FE020D0 CEEEV010 1FE020D0 0003B7D0

1FE3D8A0 IGZCPAC 1FE3D8A0 0006A500

1FEAA000 DFHWBTC 1FEAA000 0002D448

1FED8000 DFHEITMT 1FED8000 000165C0

1FEEF000 IGZCMGEN 1FEEF000 00007AF8

1FF00000 CEEEV003 1FF00000 005C9428

204CA000 DFHEMTD 204CA028 00020E70

20500000 CEEEV011 20500000 0019CB48

2069D000 DFHEDAD 2069D028 0003CDE8

20700000 DFHCCNV 20700028 001D3D30

20910000 CICSBRSJ 20910028 00001E88

20A00000 DFHAMP 20A00114 000376C0

END OF CICS TRANSACTION DUMP

1.2 BACKGROUND

Access Computing Education

-TASK CONTROL AREA (SYSTEM AREA)

000000000 00000000 00000000 00000000 00000000 0000081C 096FDD7C 00000056 00000000 *.....................?..........* 0005C780

000000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 0005C7A0

000000040 09F118B0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.1..............................* 0005C7C0

000000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 C1E2D9C1 *............................ASRA* 0005C7E0

1CICSPROD --- CICS TRANSACTION DUMP --- CODE=ASRA TRAN=BRSJ ID=1/0002 DATE=01/02/06 TIME=18:28:10 PAGE 3

-00000080 00000000 0005CAEC 00000000 00000000 0005C988 09F05CF0 00140128 001403E0 *..................Ih.0*0........* 0005C800

0000000A0 00000000 8004D080 00000000 00000000 C2D9E2D1 0A05F270 00000000 00000000 *................BRSJ..2.........* 0005C820

0000000C0 00000000 C2D9E2D1 00000000 00000000 00000000 C1E2D9C1 00000000 0A016008 *....BRSJ............ASRA......-.* 0005C840

0000000E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 0005C860

000000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 0005C880

000000120 00000000 00000000 00000000 00000000 8004D400 00000000 00000000 0005CB74 *..................M.............* 0005C8A0

000000140 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 0005C8C0

000000160 LINES TO 000001A0 SAME AS ABOVE 0005C8E0

0000001C0 00000000 00000000 02000055 00140008 00000000 00000000 00000000 00000000 *................................* 0005C940

0000001E0 00000000 00000000 C3C9C3E2 C2D9E2D1 F0C3F761 C1D2C5C1 00000B36 00020781 *........CICSBRSJ0C7/AKEA.......a* 0005C960

000000200 00000000 00000000 *........ * 0005C980

-EXEC INTERFACE USER STRUCTURE

000000000 00B46EC4 C6C8C5C9 E4E24040 40404040 00000000 00000000 09F03780 00000000 *..>DFHEIUS 0......* 00140008

000000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 00140028

000000040 00000000 00000000 001400D0 00000000 09F118B0 00000000 00000000 00000000 *.................1..............* 00140048

1.2 BACKGROUND

@ of EIB

The Exec Interface Block is created by the Command level interface to support the

command level interface. It is a transaction level control block. It is located at + x’48’ in

the EIUS

Access Computing Education

EXEC INTERFACE BLOCK
00000000 0104643F 0112018F C2D9E2D1 0000050C D3F7F0F2 0000000A 00007D02 08000000 *........BRSJ....L702......'.....* 001400D0

00000020 00000000 00000000 00000000 00000000 00000040 40404040 40404000 00000000 *................... * 001400F0

00000040 00000000 00000000 00000000 00000000 00000000 00 *..................... * 00140110

Offset Len Description Field Name

00 4 TIME EIBTIME

04 4 DATE EIBDATE

08 4 TRANSID EIBTRNID

0C 4 TASK NUMBER EIBTASKN

10 4 TERMID EIBTRMID

14 4 RESERVED EIBRSVD1

16 2 CURSOR POSITION EIBCPOSN

18 2 COMMAREA LENGTH EIBCALEN

1A 1 ATTENTION ID EIBAID

1B 2 EXEC CICS FUNCTION EIBFN

0202 ADDRESS 0436 ISSUE ERROR

0204 HANDLE CONDITION 0438 ISSUE PREPARE

0206 HANDLE AID 043A ISSUE PASS

0208 ASSIGN 043C EXTRACT LOGONMSG

020A IGNORE CONDITION 043E EXTRACT ATTRIBUTES

020C PUSH

020E POP 0602 READ

0210 ADDRESS SET 0604 WRITE

 0606 REWRITE

0402 RECEIVE 0608 DELETE

0404 SEND 060A UNLOCK

0406 CONVERSE 060C STARTBR

0408 ISSUE EODS 060E READNEXT

040A ISSUE COPY 0610 READPREV

040C WAIT TERMINAL 0612 ENDBR

040E ISSUE LOAD 0614 RESETBR

1.2 BACKGROUND
EIBFN EIBCALEN

Access Computing Education

LINE # HEXLOC VERB LINE # HEXLOC VERB LINE # HEXLOC VERB

000112 000690 CALL 000118 0006D0 EVALUATE 000120 0006D0 WHEN

000121 0006E0 CONTINUE 000123 0006E4 WHEN 000124 0006F0 CONTINUE

000126 0006F4 WHEN 000127 000700 PERFORM 000129 000718 CALL

000134 000748 IF 000135 000756 PERFORM 000137 00076E CALL

000141 00079E MOVE 000146 0007A8 CALL 000157 0007E0 CALL

000167 00090E MOVE 000168 000914 MOVE 000170 00091A MOVE

000171 000924 MOVE 000178 00092A MOVE 000179 000930 CALL

000184 00097A EVALUATE 000186 00097A WHEN 000187 00098A CONTINUE

000189 00098E WHEN 000190 00099A PERFORM 000192 0009B2 CALL

000202 0009E2 MOVE 000203 0009E8 CALL 000208 000A32 EVALUATE

000210 000A32 WHEN 000211 000A46 CONTINUE 000213 000A4A WHEN

000214 000A56 PERFORM 000216 000A6E CALL 000228 000A9E CALL

000236 000AEA MOVE 000237 000AF0 ADD 000238 000AFC MOVE

000239 000B02 ADD 000247 000B0E MOVE 000248 000B14 CALL

000254 000B66 EVALUATE 000256 000B66 WHEN 000257 000B7A CONTINUE

000259 000B7E WHEN 000260 000B8A PERFORM 000262 000BA2 CALL

000266 000BDA WHEN 000267 000BE6 PERFORM 000269 000BFE CALL

000273 000C36 WHEN 000274 000C42 PERFORM 000276 000C5A CALL

000280 000C92 WHEN 000281 000C9E PERFORM 000283 000CB6 CALL

000289 000CE6 CALL 000292 000D12 GOBACK 000295 000D1A MOVE

000301 000D2A MOVE 000302 000D30 CALL 000308 000D80 MOVE

000314 000D90 MOVE 000315 000D96 CALL 000321 000DE6 MOVE

1.3 FINDING THE STATEMENT IN ERROR

The Offset listing is read left to right, top to bottom

Access Computing Education

 000221 *EXEC CICS ASSIGN

 000222 * APPLID(WS-APPLID)

 000223 * FACILITY(WS-FACILITY)

 000224 * USERID(WS-USERID)

 000225 * SYSID(WS-SYSID)

 000226 * NOHANDLE

 000227 *END-EXEC.

 000228 Call 'DFHEI1' using by content x'0208f000271f1232200000000000 EXT

PP 5655-S71 IBM Enterprise COBOL for z/OS 4.2.0 CICSBRSJ Date 01/12/2012 Time 11:11:56 Page

7

 LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-³--+----8 Map and Cross

Reference

 000229 - '0000000000000000f0f0f1f2f6404040' by reference WS-APPLID by 18

 000230 reference WS-FACILITY by reference WS-USERID by reference 19 21

 000231 WS-SYSID end-call. 20

 000232

 000233

 000234

 000235 *

 000236 MOVE ZEROS TO INSULT. IMP 34

 000237 ADD 1 TO INSULT. 34

 000238 MOVE LOW-VALUES TO INJURY-X. IMP 35

 000239 ADD INSULT TO INJURY. 34 36

 000240 *

 000241 *EXEC CICS READ

 000242 * FILE('FILEA')

 000243 * RIDFLD(TRANS-KEY)

 000244 * INTO(FILE-REC)

 000245 * NOHANDLE

 000246 *END-EXEC.

 000247 Move length of FILE-REC to dfhb0020 IMP 24 57

 000248 Call 'DFHEI1' using by content x'0602f0002700008000f0f0f1f3f9 EXT

 000249 - '404040' by content 'FILEA ' by reference FILE-REC by 24

 000250 reference dfhb0020 by reference TRANS-KEY end-call. 57 41000278

000AF8 MOVE

1.3 FINDING THE STATEMENT IN ERROR

Access Computing Education

 FINDING THE WORKING STORAGE VALUES

 INSULT INJURY

BLW 0 0

DISP 78 80

LENG 4 4

PIC P P

1.3 FINDING THE STATEMENT IN ERROR

Access Computing Education

Data Division Map
Data Definition Attribute codes (rightmost column) have the following meanings:

 D = Object of OCCURS DEPENDING G = GLOBAL S = Spanned file

 E = EXTERNAL O = Has OCCURS clause U = Undefined format file

 F = Fixed-length file OG= Group has own length definition V = Variable-length file

 FB= Fixed-length blocked file R = REDEFINES VB= Variable-length blocked file

Source Hierarchy and Base Hex-Displacement Asmblr Data

Data Def

LineID Data Name Locator Blk Structure Definition Data Type

Attributes

 3 PROGRAM-ID CICSBRSJ--

------------*

 18 1 WS-APPLID BLW=00000 000 DS 8C Display

 19 1 WS-FACILITY BLW=00000 008 DS 4C Display

 20 1 WS-SYSID. BLW=00000 010 DS 4C Display

 21 1 WS-USERID BLW=00000 018 DS 8C Display

 22 1 WS-NETNAME. BLW=00000 020 DS 8C Display

 24 1 FILE-REC. BLW=00000 028 DS 0CL80 Group

 25 2 STAT. BLW=00000 028 0 000 000 DS 1C Display

 26 2 NUMB. BLW=00000 029 0 000 001 DS 6C Display

 27 2 NAMEX BLW=00000 02F 0 000 007 DS 20C Display

 28 2 ADDRX BLW=00000 043 0 000 01B DS 20C Display

 29 2 PHONEX. BLW=00000 057 0 000 02F DS 8C Display

 30 2 DATEX BLW=00000 05F 0 000 037 DS 8C Display

 31 2 AMOUNTX BLW=00000 067 0 000 03F DS 8C Display

 32 2 COMMENTX. BLW=00000 06F 0 000 047 DS 9C Display

 34 1 INSULT. BLW=00000 078 DS 4P Packed-Dec

 35 1 INJURY-X. BLW=00000 080 DS 0CL4 Group

 36 2 INJURY. BLW=00000 080 0 000 000 DS 4P Packed-Dec

 38 1 TRANS-LEN BLW=00000 088 DS 2C Binary

 39 1 TRANS-INPUT BLW=00000 090 DS 0CL10 Group

1.3 FINDING THE STATEMENT IN ERROR

Access Computing Education

Cobol allocates a control block with the invocation of every Cobol

program. This is called :

• Task Global Table (TGT)

It is created at the beginning of the program, and allocated in

CICS User Transaction storage

1.4 TASK GLOBAL TABLE

Access Computing Education

+ 0

+ 100

+ 6C

+ 114

+ 48

+ 68
TGT IDENTIFIER (‘3TGT’)

LENGTH OF WORKING STORAGE

ADDRESS OF PREVIOUS TGT IN CHAIN

ADDRESS OF COBOL PROGRAM

ADDRESS OF WORKING STORAGE

(all offsets are in hex)

VARIABLE PORTION OF TGT

BASE LOCATORS FOR WORKING STORAGE

BASE LOCATORS FOR LINKAGE SECTION

1.4 TASK GLOBAL TABLE

Access Computing Education

*** TGT MEMORY MAP ***
 TGTLOC

 000000 RESERVED - 72 BYTES
 000048 TGT IDENTIFIER
 00004C RESERVED - 4 BYTES
 000050 TGT LEVEL INDICATOR
 000051 RESERVED - 3 BYTES
 000054 32 BIT SWITCH
 000058 POINTER TO RUNCOM
 00005C POINTER TO COBVEC
 000060 POINTER TO PROGRAM DYNAMIC BLOCK TABLE
 000064 NUMBER OF FCB'S
 000068 WORKING-STORAGE LENGTH
 00006C RESERVED - 4 BYTES
 000070 ADDRESS OF IGZESMG WORK AREA
 000074 ADDRESS OF 1ST GETMAIN BLOCK (SPACE MGR)
 000078 RESERVED - 2 BYTES
 00007A RESERVED - 2 BYTES
 00007C RESERVED - 2 BYTES
 00007E MERGE FILE NUMBER
 000080 ADDRESS OF CEL COMMON ANCHOR AREA
 000084 LENGTH OF TGT
 000088 RESERVED - 1 SINGLE BYTE FIELD
 000089 PROGRAM MASK USED BY THIS PROGRAM
 00008A RESERVED - 2 SINGLE BYTE FIELDS
 00008C NUMBER OF SECONDARY FCB CELLS
 000090 LENGTH OF THE ALTER VN(VNI) VECTOR
 000094 COUNT OF NESTED PROGRAMS IN COMPILE UNIT

1.4 TASK GLOBAL TABLE

Access Computing Education

*** TGT MEMORY MAP ***
 000098 DDNAME FOR DISPLAY OUTPUT
 0000A0 RESERVED - 8 BYTES
 0000A8 POINTER TO COM-REG SPECIAL REGISTER
 0000AC RESERVED - 52 BYTES
 0000E0 ALTERNATE COLLATING SEQUENCE TABLE PTR.
 0000E4 ADDRESS OF SORT G.N. ADDRESS BLOCK
 0000E8 ADDRESS OF PGT
 0000EC RESERVED - 4 BYTES
 0000F0 POINTER TO 1ST IPCB
 0000F4 ADDRESS OF THE CLLE FOR THIS PROGRAM
 0000F8 POINTER TO ABEND INFORMATION TABLE
 0000FC POINTER TO TEST INFO FIELDS IN THE TGT
 000100 ADDRESS OF START OF COBOL PROGRAM
 000104 POINTER TO ALTER VNI'S IN CGT
 000108 POINTER TO ALTER VN'S IN TGT
 00010C POINTER TO FIRST PBL IN THE PGT
 000110 POINTER TO FIRST FCB CELL
 000114 WORKING-STORAGE ADDRESS
 000118 POINTER TO FIRST SECONDARY FCB CELL
 00011C POINTER TO STATIC CLASS INFO BLOCK 1
 000120 POINTER TO STATIC CLASS INFO BLOCK 2

 *** VARIABLE PORTION OF TGT ***

 000124 BASE LOCATORS FOR SPECIAL REGISTERS
 00012C BASE LOCATORS FOR WORKING-STORAGE
 000130 BASE LOCATORS FOR LINKAGE-SECTION
 00013C CLLE ADDR. CELLS FOR CALL LIT. SUB-PGMS.
 000194 INTERNAL PROGRAM CONTROL BLOCKS

1.4 TASK GLOBAL TABLE

Access Computing Education
Access Computing

Education

EIP STUB

@ DFHEIP

EXEC CICS READ

SAVE

APPLICATION

REGISTERS

TURN READ

INTO ‘0602’

CALL DFHFCP

CHECK THE

FILE CONTROL

TABLE,

IS FILE OK,

IS ACCESS OK,

IS SECURITY OK

THEN ISSUE I/O

READ TO VSAM..

TAKE VSAM

RETURN

CODE

RETURN FROM

DFHFCP, RESTORE

REGISTERS, PASS

RETURN CODE

APPLICATION

REGISTER

SAVE

AREA

DFHEIP APPLICATION FLOW

1.5 LE DSA

Access Computing Education

*** DSA MEMORY MAP ***
 DSALOC

 00000000 REGISTER SAVE AREA
 0000004C STACK NAB (NEXT AVAILABLE BYTE)
 00000058 ADDRESS OF INLINE-CODE PRIMARY DSA
 0000005C ADDRESS OF TGT
 00000060 ADDRESS OF CAA
 00000080 XML PARSE WORK AREA ANCHOR
 00000084 SWITCHES
 00000088 CURRENT INT. PROGRAM OR METHOD NUMBER
 0000008C ADDRESS OF CALL STATEMENT PROGRAM NAME
 00000090 CALC ROUTINE REGISTER SAVE AREA
 000000C4 ADDRESS OF FILE MUTEX USE COUNT CELLS
 000000C8 PROCEDURE DIVISION RETURNING VALUE

1.5 LE DSA

Access Computing Education

FLAGS

PREV DSA SAVE AREA

NEXT DSA SAVE AREA

REGISTER SAVE AREA R14 – R12

ADDRESS OF CURRENT DSA

ADDRESS OF TASK GLOBAL TABLE

X’0’

X’4’

X’8

X’C’

X’54’

X’5C’

DYNAMIC SAVE AREA

1.5 LE DSA

Access Computing Education

The information in the CEEMSG is as follows :

• Each DSA address

• The name of the Program Unit

• The Program Unit entry point address

• The Program Unit Offset (the last instruction to run in the

routine)

• The Entry Point name

• The Entry Point offset

The Registers are also displayed

1.5 LE DSA

Access Computing Education

The Cobol Compiler assigns BLW’s (Base locators for Working

Storage Cells), to the Application's Working Storage.

The Compiler assigns BLL Cells to the Application's Linkage

Section. A Cell is simply 4 bytes to hold an address and Cells are

given numbers.

These Cell numbers can be found in the Data Division Map in the

Compiler output.

1.6 BASE LOCATOR CELLS

Access Computing Education

@

WORKING STORAGE

@

@

BLW = 0

BLW = 1

BLW = 2

DATA

DATA

DATA

TGT

4096

4096

4096

1.6 BASE LOCATOR CELLS

Access Computing Education

1.6 BASE LOCATOR CELLS

00005240 00000000 00000000 00000000 00000000 00104001 1FB38B88 00000000 A0910B0A *..................h.....j..* 1FB38D20

00005260 1FCAA308 1FB3A05C 1FB38E68 1FB3A110 1FB3A1A0 001400D0 1F941ACC 1F941A80 *..t....*.................m...m..* 1FB38D40

00005280 00000000 1FB3A190 1FB39F20 20910154 2091055C 1FB37E58 00000000 1FB38F60 *.............j...j.*..=........-* 1FB38D60

000052A0 00000000 00000000 1FB38D30 1FB39F20 00000000 00000000 00000000 00000000 *................................* 1FB38D80

From Addr in

Register 13 – Begin of current DSA

Offset x’5C’ – Addr of TGT

Access Computing Education

00006440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1FB39F20

00006460 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1FB39F40

00006480 00000000 00000000 F3E3C7E3 00000000 06000000 68030260 1FB39B68 000757FC *........3TGT...........-........* 1FB39F60

000064A0 1FB3A0C8 00000000 00000A90 00000000 00000000 1FB3A100 00000000 00000000 *...H............................* 1FB39F80

000064C0 1FB37E58 000001A8 00000000 00000000 00000000 00000001 E2E8E2D6 E4E34040 *..=....y................SYSOUT * 1FB39FA0

000064E0 C9C7E9E2 D9E3C3C4 00000000 00000000 00000000 00000000 00000000 00000000 *IGZSRTCD........................* 1FB39FC0

00006500 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1FB39FE0

00006520 00000000 00000000 20910124 00000000 1FB3A0B4 1FB39E40 209104D6 00000000 *.........j............. .j.O....* 1FB3A000

00006540 20910028 20910178 1FB3A0B4 20910150 00000000 1FB3A190 00000000 00000000 *.j...j.......j..................* 1FB3A020

00006560 00000000 00000000 1FB3A110 1FB3A190 00000000 001400D0 00000000 00000000 *................................* 1FB3A040

00006580 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1FB3A060

1.6 BASE LOCATOR CELLS

00005240 00000000 00000000 00000000 00000000 00104001 1FB38B88 00000000 A0910B0A *..................h.....j..* 1FB38D20

00005260 1FCAA308 1FB3A05C 1FB38E68 1FB3A110 1FB3A1A0 001400D0 1F941ACC 1F941A80 *..t....*.................m...m..* 1FB38D40

00005280 00000000 1FB3A190 1FB39F20 20910154 2091055C 1FB37E58 00000000 1FB38F60 *.............j...j.*..=........-* 1FB38D60

000052A0 00000000 00000000 1FB38D30 1FB39F20 00000000 00000000 00000000 00000000 *................................* 1FB38D80

From Addr in

Register 13 – Begin of current DSA

Offset x’5C’ – Addr of TGT

Entry Addr of Program BLW 0 BLL 0 BLL 1
Addr of

Working Storage

00006700 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1FB3A1E0

00006720 00000000 00000000 0000001C 00000000 00000000 00000000 000A0000 00000000 *................................* 1FB3A200

INSULT INJURY

Access Computing Education

CICSTS42 --- CICS TRANSACTION DUMP --- CODE=ASRA TRAN=LNKA

ID=1/0004 DATE=13/09/24 TIME=04:46:31 PAGE 104

PROGRAM INFORMATION FOR THE CURRENT TRANSACTION

 Number of Levels 00000002

INFORMATION FOR PROGRAM AT LEVEL 00000002 of 00000002

 Program Name CICSLNKZ Invoking Program CICSLNKA

 Load Point 20911860 Program Length 000016B8

 Entry Point A0911888 Addressing Mode AMODE 31

 Language Defined Unknown Language Deduced COBOL II

 Commarea Address 1FB3A1A8 Commarea Length 00000006

 Execution Key USER Data Location BELOW

 Concurrency QUASIRENT Api CICSAPI

 Runtime LE370

 Environment User application

INFORMATION FOR PROGRAM AT LEVEL 00000001 of 00000002

 Program Name CICSLNKA Invoking Program CICS

 Load Point 20910000 Program Length 00001858

 Entry Point A0910028 Addressing Mode AMODE 31

 Language Defined Unknown Language Deduced COBOL II

 Commarea Address 00000000 Commarea Length 00000000

 Execution Key USER Data Location BELOW

 Concurrency QUASIRENT Api CICSAPI

 Runtime LE370

 Environment User application

1.7 EXEC CICS LINK

Access Computing Education

1.7 EXEC CICS LINK

EXEC CICS

LINK

PROGRAM 2

EXEC CICS

LINK

PROGRAM 3

ASRA

ABEND

TCA SYSTEM AREA

+ x’38’ @ of current

DFHPESA

DFHPESA

+ x’C’ @ of

Previous DFHPESA

+ x’18’ @ of LE DSA

PROGRAM 1

PROGRAM 2

PROGRAM 3

DFHPESA

1st PESA

 on Link Chain

+ x’18’ @ of LE DSA

LE DSA

Program 2

LE DSA

Of Program 1

LE DSA

Program 3

R13

@ of

Current

DSA DSA + x’5C’ = @ TGT

TGT + x’100’ = @ of Program

TGT + x’114’ = @ of W/S

Access Computing Education

TASK CONTROL AREA (SYSTEM AREA)

00000000 00000000 00000000 00000000 00000000 0000046C 2B3CD9F8 00000095 00000000 *......................R8...n....* 0005F800

00000020 00000000 00000000 00000000 00000000 00000000 00000000 1F93B328 00000000 *.........................l......* 0005F820

00000040 1FB4F8E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *..8.............................* 0005F840

00000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 C1E2D9C1 *............................ASRA* 0005F860

00000360 80000000 C3C9C3E2 D3D5D2C1 00000000 00000000 00000000 01906EC4 C6C8D7C5 *....CICSLNKA..............>DFHPE* 1F93B310

00000380 E2C10180 00000000 1F93A40C 00000000 1FB38D30 00000000 00000000 00000000 *SA.......lu.....................* 1F93B330

000003A0 00000000 00001FB3 3AE80000 00000000 00001F98 2E441F93 9B240000 0000D8D9 *.........Y.........q...l......QR* 1F93B350

000003C0 00080000 00000100 00060880 80000000 00000000 00001FB3 3B300000 00000000 *................................* 1F93B370

000003E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1F93B390

00000400 00000000 00000014 00D00000 00001FB3 8D300000 00000000 00000000 00009F11 *................................* 1F93B3B0

1.7 EXEC CICS LINK

The Program Environment Save Area - PESA is created whenever a Program

issues an EXEC CICS LINK. It is created by the Program Manager Domain.

The PESA address can be found at + x’38’ in the System TCA

The previous DSA address can be found at PESA + x’18’

The address of the previous PESA can be found at + x’C’ in the current PESA

Address of previous DSA

Address of previous PESA (if it exists)

Access Computing Education

The COBOL TGT has an eyecatcher at offset X’48’ It is

‘3TGT’.

It is always necessary to check that this is the correct TGT

If the failure is in a COBOL program that has been 'called' using

the COBOL static CALL statement, CICS will have no

knowledge of this program. In order to find the address of this

program, check how far down the Load module the program is

located. This is the offset down the program storage.

This can easily be ascertained by the output from AMBLIST

1.8 COBOL CALL

Access Computing Education

//JOBNAME JOB,’ACCNT’,’AMBLIST’,CLASS=A,MSGCLASS=X,

// NOTIFY=USERID

//STEP1 EXEC PGM=AMBLIST

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DSN=the.load.library,DISP=SHR

//SYSIN DD *

 LISTLOAD MEMBER=membername,output=xref

//

CONTROL SECTION ENTRY

 LMOD LOC NAME LENGTH TYPE LMOD LOC CSECT LOC NAME

 00 DFHELII 26 SD

 00 00 DFHEPIN

 08 08 DFHEI1

 08 08 DFHEI8

1.8 COBOL CALL

Access Computing Education

Extract from AMBLIST output

CONTROL SECTION

LMOD LOC NAME LENGTH TYPE

 00 DFHECI 1E SD

 20 CICSBRSJ 1284 SD

 12A8 CEESG005 18 SD

 12C0 CEEBETBL 24 SD

 12E8 CEESTART 7C SD

 1368 IGZCBSO 568 SD

 18D0 CEEARLU B8 SD

 1988 CEEBPIRA 2C0 SD

 1C48 CEECPYRT EB SD

 1D38 CEEBPUBT 70 SD

 1DA8 CEEBTRM AC SD

 1E58 CEEBLLST 5C SD

 1EB8 CEEBINT 08 SD

1.8 COBOL CALL

Access Computing Education

 CONTROL SECTION

 NAME ORIGIN LENGTH
 DFHECI 00 48
 CICSPROG 48 6B8
 IGZEBST 700 428
 PROG1 B28 30
 PROG2 B58 50
 PROG3 B88 120

ENTRY ADDRESS 48
TOTAL LENGTH CA8

1.8 COBOL CALL

Access Computing Education

The layout of the REGISTER SAVE AREA is an IBM

convention. All systems follow this.

Register 13 is used to contain the address of a REGISTER SAVE

AREA.

FLAGS

PREVIOUS

SAVE AREA

@

R0
NEXT

SAVE

AREA @

R15 R14

R1

R9

R3

R8

R2

R7

R6

R11

R5

R10

R4

R12

REGISTER SAVE AREA LAYOUT

1.9 THE REGISTER SAVE AREA

Access Computing Education

So at any time the current application registers can be determined

by scanning the Save Area in the DSA.

The current DSA can be found by following the address in

Register 13.

The DSA will contain Register 14 at offset x’C’ or the fourth

Word, which is the return address into the program from where

the Call was made

Offset x’4’ contains the address of the previous DSA

1.9 THE REGISTER SAVE AREA

Access Computing Education

000003420 00000000 09F06CD0 00000000 00000000 00104001 09F06938 00000000 89DFCB10 *.....0............ ..0......i...* 09F06B20

000003440 00000000 09F07CA0 09F06C08 09F07D58 09F07DB8 09DFC058 09E6DFA4 00000000 *.....0...0...0'..0'......W.u....* 09F06B40

000003460 001400D0 09DFC148 09F07B68 09F07DA8 09DFC56C 09F05CF0 09F07B78 09F06C60 *......A..0...0'y..E..0*0.0...0.-* 09F06B60

000003480 09DFC56C 09F05D00 09F06B30 09F07B68 00000000 00000000 09F06B40 09F07B78 *..E..0)..0,..0...........0, .0..* 09F06B80

As can be seen the first 72 (x’48’) bytes in the DSA is a Register Save Area. This is referred to as the APPLICATION

REGISTER SAVE AREA

By analysing this Save area, we can determine the contents of the Registers at the time of the Call.

This Save Area would be updated with the Registers on every Call

Remember all EXEC CICS commands are CALLs

So by analysing the contents of Register 14, we can subtract the Program’s Entry Point address from this, and using the Offset

listing from the Compiler, we can locate WHICH CALL is the current one.

1.9 THE REGISTER SAVE AREA

From Addr in

Register 13 – Begin of current DSA
Prev Save

Area addr

Next Save

Area addr Reg 14

Reg 15 Reg 0 Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6

Reg 7 Reg 8 Reg 9 Reg 10 Reg 11 Reg 12

Access Computing Education

CALL ‘Q’

 IF

PROGRAM P

PREV SAVE AREA
NEXT SAVE AREA

R14
R15

R1
R0

R4
R3
R2

R5
R6
R7
R8

R10
R9

R12
R11

CALL ‘R’

 IF

PROGRAM Q

PREV SAVE AREA
NEXT SAVE AREA

R14
R15

R1
R0

R4
R3
R2

R5
R6
R7
R8

R10
R9

R12
R11

CALL ‘S’

 IF

PROGRAM R

PREV SAVE AREA
NEXT SAVE AREA

R14
R15

R1
R0

R4
R3
R2

R5
R6
R7
R8

R10
R9

R12
R11

THIS SAVE AREA WAS

ACQUIRED BY P

THIS SAVE AREA WAS

ACQUIRED BY Q

THIS SAVE AREA WAS

ACQUIRED BY R

R13

1.9 THE REGISTER SAVE AREA

Access Computing Education

Register 14 contains the Return address into the program from

where the last CALL came

By locating Register 14, the last CALL statement can be

ascertained

1.9 THE REGISTER SAVE AREA

Call Rtn1

IF…

Call Rtn2

IF…

Call Rtn3

IF…

Registers are saved in the RSA.

R14 points to the IF

Registers are saved in the RSA.

R14 points to the IF

Registers are saved in the RSA.

R14 points to the IF

Access Computing Education

W/S

P/D

W/S

‘3TGT’

@ PROGRAM

@BLW=1

@ W/S

@BLL=2

@BLL=1

L/S

P/D

@ EIS

EIS

EIB

W/S

W/S

W/S

W/S
@BLW=0

‘3TGT’

@ PROGRAM

@BLW=1

@ W/S

@BLL=2

@BLL=1

@BLW=0

COMMAREA

TCA

PROGRAM 1 PROGRAM 2

TGT TGT

1.10 PROGRAM CONTROL BLOCKS

Access Computing Education
Access Computing Education

The ICVR parameter controls how much CPU time a transaction

is allowed to consume between calls to CICS

Its specified in the SIT – (Systems Initialisation Table)

It covers all transactions and can be changed online

A runaway time can be established on an individual transaction

basis as well

1.11 INTERVAL CONTROL VALUE RUNAWAY

Access Computing Education

The 'EXEC CICS ENTER TRACENUM' is a much better

method of narrowing the loop

 EXEC CICS ENTER TRACENUM (01)

 RESOURCE ('TEXT')

 FROM (W/S)

The 'EXEC CICS ENTER TRACENUM' does not cause CICS

to return to the Dispatcher, so this command does not reset the

timer (ICVR)

1.12 TECHNIQUES FOR DEBUGGING LOOPS

Access Computing Education

ANY QUESTIONS, or EMAIL ME AT :

COLIN.PEARCE@GMAIL.COM

A range of CICS courses

A range of z/OS courses

A range of DB2 courses

THANK YOU FOR YOUR TIME AND PATIENCE

mailto:COLIN.PEARCE@GMAIL.COM

Notes:

1.1 CONSIDERATIONS

WHERE IS THE PROBLEM?

The PROGRAM STATUS WORD (PSW) will contain the address of the NEXT instruction, that would

have executed. However, if the interrupt code is 0010, or 0011, then the PSW will contain the

address of the failing instruction.

The Transaction Dump module index, located at the end of the dump, will show both the Load

address and the Entry address.

The Linkedit Map from the Compile and Link output will also show the Load module structure, all the

modules that combine to create the Load module that is in error.

The AMBLIST utility can be run to list the structure of the Load module. This will be covered shortly.

1.1 CONSIDERATIONS

The PROGRAM STATUS WORD is 8 bytes long in 24 and 31 bit addressing mode. It can be found on

the first page of the transaction dump.

The 8 bytes are divided into 2 words, however an additional 8 bytes are included in the dump as

follows:

cccccccc AAAAAAAA LLLLIIII uuuuuuuu

WORD 1 WORD 2 WORD 3 WORD 4

Each word is 4 bytes in length.

WORD 1 Contains the System Control information, such data as the status of the Condition

 Code, Protection Key, Wait State and execution state - Problem or Supervisor.

WORD 2 Contains the address of the NEXT instruction that would be executed either 24bit or

 31bit mode. 31bit mode is more likely.

WORD 3 The first two bytes contain the length of the instruction that failed.

 The remaining two bytes contain the type of exception that occurred, referred to as

 Program Interrupt codes.

WORD 4 Is unused for our purposes.

1.1 CONSIDERATIONS

WHAT PROGRAM IS AFFECTED?

The Transaction Dump will display on the first page the name of the Program, CICS considered to be

currently executing.

The storage occupied by this program will be printed in the dump.

1.1 CONSIDERATIONS

WHAT EXTERNAL AREAS CAN BE INTERROGATED?

• Any messages on the affected terminal.

• Any messages on the System Log/Console.

• Any messages on the CICS Log.

• Any unusual circumstances surrounding the execution of the Program

1.1 CONSIDERATIONS

WHAT IS AVAILABLE FOR DIAGNOSTIC PURPOSES

• The Compiler output.

• The CEEMSG output

• The AMBLIST output

• The Transaction Dump.

• The Dump utility :

 DFHDU660 - CICS/TS 4.1

 DFHDU670 - CICS/TS 4.2

1.2 BACKGROUND

CICS demands that all programs be written as QUASI-Reentrant, this means that there must be no

user code between calls to CICS, that is self-modifying.

CICS uses a technique called MULTI-THREADING. This allows many tasks to execute the same copy

of the program.

To achieve this, when the program is initiated the programs Working-Storage areas are kept outside

of the program. This is quite the opposite to Batch processing.

This gives all tasks using the same program, their own copy of Working-Storage areas.

1.2 BACKGROUND

The utility DFHDU660 is used to print the Transaction Dumps and can be used to select the required

dump.

//TRANDUMP EXEC PGM=DFHDU660

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//DFHDMPDS DD DSN=CICS.DFHDMPA,DISP=SHR

//DFHTINDX DD SYSOUT=*

//DFHPRINT DD SYSOUT=*

//SYSIN DD *

 SELECT TYPE=OR

 TRANID=ABCD

 END

/*

The CICS/TS OPERATIONS and UTILITIES GUIDE should also be consulted for the parameters.

1.2 BACKGROUND

When a transaction abend occurs the following message is sent to the CICS JES log and can be

viewed there.

DFHAP0001 CICSNAME An Abend (Code 0C4/AKEA) Has OCCURRED AT OFFSET X'00001030' IN

MODULE CICSBRSJ

The Kernel issues the first Abend Code : AKEA on any program check in the program.

The offset is the displacement from the beginning of the load module

DFHME0116 CICSNAME (Module:DFHMEME) CICS SYMPTOM STRING FOR Message DFHAP0001 is

PIDS/566540301 LVLS/640 MS/DFHAP0001 RIDS/DFHAPDS PTFS/TS640 AB/S00C4 AB/UAKEA

RIDS/CICSBRSJ ADRS/00001030

This message is mainly for System Programmers who need to talk to IBM support personnel

1.2 BACKGROUND

This is the first page of the Transaction dump. It has the following :

• CICS Region name

• Abend code

• Transaction name

• Dumpid (Dump Run number and Dump Count)

• Date and time of the Abend

• CICS Level

• Symptom string

• Registers and Program Status Word

• Transaction details as in the CICS System Definition dataset (CSD)

• Task Control Area

1.2 BACKGROUND

This is the Module index from the transaction dump. It shows the Load and Entry point addresses

and length of each module loaded into CICS. It is found at the end of the transaction dump.

Question to ask

Is the Program Load Address and the Program Entry Address, the same?

1.2 BACKGROUND

The above display shows how to find the EXEC INTERFACE BLOCK via the Task Control Area (System).

The offset at x’1CC’ contains the address of the EXEC Interface User Structure.

Offset x’48’ into the EIUS is the address of the Exec Interface Block

The Exec Interface Block is created by the Command level interface to support the command level

interface. It is a transaction level control block

1.2 BACKGROUND

The above shows the layout of the EIB :

The Transaction dump layout

The Data area layout

1.3 FINDING THE STATEMENT IN ERROR

The Transaction will contain two pieces of information that will be help you locate the Statement in

the Program from where the error occurred.

Remember the role of the Program Status Word (PSW) – it contains the address of the next

instruction that would have executed had the program continued on. This is in the second word.

The address of the Program can be found in the Transaction Dump – Module Index. This gives both

the Load address and the Entry Point address.

So Subtract the Entry Point address from the PSW address. This will give you a Displacement.

Now ensure your COBOL program has been compiled with the compiler option OFFSET or LIST. This

will give the display as above.

Look for the headings :

 Line # Hexloc Verb

This is read left to right, top to bottom.

Look for an Offset that is just lower than the Displacement. Then note the statement number in

the program.

1.3 FINDING THE STATEMENT IN ERROR

Locate this statement in the Cobol Compile listing.

In our case it is :

 ADD INSULT TO INJURY

1.3 FINDING THE STATEMENT IN ERROR

In order to find the Working Storage areas in the dump, we need to know 4 things about those

working Storage items

• The BLW (Base Locator for Working Storage)

• The Displacement

• The Length

• The Picture (how it’s defined)

1.3 FINDING THE STATEMENT IN ERROR

The Cobol Data Division Map in the Compile listing output will contain most of this information

1.4 TASK GLOBAL TABLE

Cobol allocates a control block with the invocation of every Cobol program. This is :

• Task Global Table (TGT)

This Control Block is created at the beginning of the program, and allocated in CICS User Transaction

storage.

Understanding the role of the Task Global Table is fundamental to debugging any COBOL program.

Let’s look at it more closely :

1.4 TASK GLOBAL TABLE

The TGT is printed in the Compiler output, provided OFFSET or LIST is specified as a compiler option.

The TGT has the eyecatcher in the transaction dump ‘3TGT’ at offset x’48’ from the beginning.

The TGT used to be used for saving the registers in the Application Register Save area. However,

now this Register Save area is now handled by the Language Environment DSA (DYNAMIC SAVE

AREAS). The TGT holds the Entry point address of the program, the Working Storage address, as well

as the BLWs and BLLs.

The Base Locators for Working Storage and the Base Locators for Linkage Section are always in the

variable portion of the TGT. Their offsets need to be verified by the layout of the TGT in your

Compile listing

Nb. Due to the nature of the dump output, the beginning of the TGT may not be printed in the dump

as it contains low-values, and the dumping process does not print repeated lines of low-values. So

the eyecatcher ‘3TGT’ is very important.

The following 2 pages show the TGT as printed in the Cobol Listing.

1.4 TASK GLOBAL TABLE

The above is the TGT as displayed in the COBOL Compile output

1.4 TASK GLOBAL TABLE

The above is the TGT as displayed in the COBOL Compile output (cont)

1.5 LE DSA

The Exec Interface Program handles to Call and provides the handshake between the Program and

the CICS function. The main function of the EIP is to interpret the Call for CICS services. issued from

the application and hand control over to the relevant management module invoked to deal with the

request. The Call is turned into a 2-bytes Function code.

The EIP subroutine that contains the address of the EIP, is usually in link-edited in front of the COBOL

program.

1) The application issues an ‘EXEC CICS READ’.

2) Control passes to the Exec Interface Program via Exec Interface subroutine. This

 routine is Linked into the main program load module during Compile and Link processing.

3) The EIP saves the Application’s Registers in the Applications Register Save Area. For

 COBOL, this is to found at the beginning of the Dynamic Save Area that has already

 been established by LE (Language Environment).

4) EIP then invokes the required management module to perform the function, which

 checks the validity of the Call.

5) Upon return EIP restores the Application’s Registers and passes the return code and

 control back to the instruction following the Call.

1.5 LE DSA

The above is the LE DSA as displayed in the COBOL Compile output

1.5 LE DSA

Layout of the LE DSA

1.5 LE DSA

CEEMSG is a Sysout dataset defined in the CICS Startup JCL and used by LE to trap abending

information.

1.6 BASE LOCATOR CELLS

The Cobol Compiler assigns BLW’s (Base locators for Working Storage Cells), to the Application's

Working Storage.

The Compiler assigns BLL Cells to the Application's Linkage Section. A Cell is simply 4 bytes to hold

an address and Cells are given numbers.

These Cell numbers can be found in the Data Division Map in the Compiler output.

1.6 BASE LOCATOR CELLS

The COBOL BLWs and BLLs can be found by scanning the variable portion of the TGT.

The BLW number assignment is used then as an index into the BLWs stored in the TGT, where a

series of addresses are held, depending on the size of the Application's Working Storage.

For the BLL Cells; CICS sets up the following:

BLL = 0 is low-values

BLL = 1 is the address of the EXEC INTERFACE BLOCK

BLL = 2 is the address of DFHCOMMAREA (if it exists)

1.6 BASE LOCATOR CELLS

How to find the TGT in the Transaction dump from the LE DSA, which is located from Register 13,

that we see on the first page of the dump.

The LE DSA has an eyecatcher in the first 4 bytes. It is 00104001

1.6 BASE LOCATOR CELLS

Then how to find the BLWs and BLLs in the TGT, in the Transaction dump, using the TGT Map from

the Cobol Compile listing.

From there we can locate the Working storage items, by adding the Displacements that we found in

the Data Division map to the BLW 0 address

1.7 EXEC CICS LINK

These are the LINK levels as displayed in the Transaction dump

1.7 EXEC CICS LINK

The Program Environment Save Area - PESA is created whenever a Program issues an EXEC CICS

LINK. It is created by the Program Manager Domain

1.7 EXEC CICS LINK

The Program Environment Save Area - PESA is created whenever a Program issues an EXEC CICS

LINK. It is created by the Program Manager Domain

1.8 COBOL CALL

However if the failure is in a COBOL program that has been 'called' using the COBOL static CALL

statement, then CICS will have no knowledge of the existence of this program. In order to find the

address of this program, it is necessary to check how far down the Load Module the program is

located. This is the offset down the program storage. The utility AMBLIST can be used to ascertain

the layout of the Load Module, as can other vendor software utilities.

//JOBNAME JOB,’ACCNT’,’AMBLIST’,CLASS=A,MSGCLASS=X,NOTIFY=USERID

//STEP1 EXEC PGM=AMBLIST

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DSN=THE.LOAD.LIBRARY,DISP=SHR

//SYSIN DD *

 LISTLOAD MEMBER=membername,output=xref

//

In the Output look for the heading ‘Control Section’, then review the data under headings : LMOD

LOC NAME LENGTH TYPE

1.8 COBOL CALL

CONTROL SECTION ENTRY

 LMOD LOC NAME LENGTH TYPE LMOD LOC CSECT LOC NAME

 00 DFHELII 26 SD

 00 00 DFHEPIN

 08 08 DFHEI1

 08 08 DFHEI8

 08 08 DFHEI7

 08 08 DFHEI15

 08 08 DFHEI11

 08 08 DFHEI12

 08 08 DFHEPI

 08 08 DFHEI14

 08 08 DFHEI6

 08 08 DFHEXEC

 08 08 DFHEI17

 08 08 DFHEI18

 08 08 DFHEI2

 08 08 DFHEI10

 08 08 DFHEI01

 08 08 DLZEI01

 08 08 DFHEI13

 08 08 DLZEI02

 28 CICSCALL FC0 SD

 FE8 CEESG005 18 SD

 1000 MGDATEIN F28 SD

1.8 COBOL CALL

The AMBLIST will produce quite of lot of output, and initially it might seem too much. However look

for the above output and this will tell you the breakup of the Load Module.

As can be seen in this example the program we coded, CICSBRSJ begins x’20’ down the Load Module

It is important to understand the make up of the Load Module as the error might be in a ‘called’

subroutine module.

1.8 COBOL CALL

In the above example there are many modules that combine together to form the load module. It is

important that the correct module is located in the Transaction Dump.

Using the above example, assume that CICSPROG has a load point of C24680, the entry point, and

the address that is stored in the TGT, will therefore be C246C8.

PROG1 subroutine will have an entry address of C24680 + B28 = C251A8. If the PSW had an address

of C251C8, then we simply subtract C251A8 (entry point) from C251C8.

Ensure the length of the load module matches the load module being used by the transaction. The

Program Control information from the Program Manager Domain, which is listed in the Transaction

Dump, lists the length of the module. The Module index at the end of the Transaction dump, also

has the program’s length

1.9 THE REGISTER SAVE AREA

The layout of the REGISTER SAVE AREA is an IBM convention. All systems follow this. A REGISTER

SAVE AREA is as follows:

Register 13 is used to contain the address of a REGISTER SAVE AREA. So we should always look at

the contents of this register.

The return address of where the Call came from can be traced back through Register 14.

If we can find the entry address of the program (module index at the end of the transaction listing),

or the CEEMSG output, or x’100’ in the TGT, then we can subtract that address from the address in

Register 14, and find the displacement into the program, where the Call came from. Now we only

have to find the OFFSET listing in the COBOL Compiler output to find the statement number relative

to this offset.

The first 72bytes (48 in Hex) of the LE DSA is a Save Area. This is the Application Register Save Area,

that we mentioned in session 3.

1.9 THE REGISTER SAVE AREA

So at any time the current application registers can be determined by scanning the Save Area in the

DSA

Recall the DSA can be found by following the address in Register 13. Remember, this Register points

to a Save Area. Offset x’4’ points to the previous DSA in the stack, and so on... This stack is created

by LE when the Exec CICS API is not involved in the transfer of the program.

The DSA will contain Register 14 at offset x’C’, which is the return address into the program from

where the Call (EXEC CICS command) came.

Let’s look at an example of what a DSA would look like in the Transaction Dump

1.9 THE REGISTER SAVE AREA

As can be seen the first 72 (x’48’) bytes in the DSA is a Register Save Area. This is referred to as the

APPLICATION REGISTER SAVE AREA

By analysing this Save area, we can determine the contents of the Registers at the time of the Call.

This Save Area would be updated with the Registers on every Call

Remember all EXEC CICS commands are CALLs

So by analysing the contents of Register 14, we can subtract the Program’s Entry Point address from

this, and using the Offset listing from the Compiler, we can locate WHICH CALL is the current one.

Let’s look at the Save Areas and how to follow them when a Subroutine Calls another Subroutine.

1.9 THE REGISTER SAVE AREA

The above diagram highlights how modules that CALL other modules are linked together. The DSA is

used to hold the calling modules registers. The address of the calling programs Save Area can be

found in the second word of the called programs Save Area.

This is important because for COBOL CALL statements, it is only by this methodology that each

programs Working Storage can be found. In order to find each programs TGT, it is necessary to find

offset x’5C’ in the DSA. The TGT will have an eye-catcher at offset x’48’. This ’3TGT'.

In all cases offset x'100' must be checked for the correct programs entry point address, and

therefore the correct Working Storage.

Remember Register 14 will contain the return address of the statement after the CALL in the calling

program

1.9 THE REGISTER SAVE AREA

In the CALL process, a number of internal activities occur :

Register 1 Addresses the Parameters passed in the CALL USING …

Register 13 Addresses a Save Area. For LE this would be the current DSA

Register 14 contains the return address into the program immediately following the CALL

Register 15 contains the address of the Call’d program, or low-values to indicate a Return code.

 01 Param1 PIC …

 01 Param2 PIC …

 01 Param3 PIC …

So :

Call S-R1 USING Param1, Param2, Param3

Register 1 will contain the address of @Param1|@Param2|@Param3

1.10 PROGRAM CONTROL BLOCKS

The above diagram shows the relationship between the Task Global table and the Working Storage

areas. The Program can be clearly seen. The Working storage address that is at offset x’114’ into

the TGT, contains the same address as BLW=0, in the variable portion of the TGT

The Base Locators for Linkage Section can be seen. The EIB is always BLL=1. This means that EVERY

program that runs under the transaction has exactly the same address for BLL=1, as there is only one

EIB per transaction.

BLL2 always contains the address of the DFHCOMMAREA, (if it exists).

1.11 INTERVAL CONTROL VALUE RUNAWAY (ICVR)

The ICVR parameter controls the amount of CPU time a task is allowed to consume before calling

CICS for a service.

This parameter is specified in the SYSTEM INITIALIZATION TABLE (SIT), and is a system wide value,

that is all transactions fall within its control.

The SIT is the parameter table for CICS. CICS reads this table when it initialises.

The current ICVR setting can be determined by issuing the CEMT INQ SYSTEM command. The

RUNAWAY value will specify the time in milliseconds

The default for the parameter is 5 seconds, and can be dynamically changed the following command

CEMT SET SYSTEM RUNAWAY (VALUE)

A runaway time can be established on an individual transaction basis as well.

1.12 TECHNIQUES FOR DEBUGGING LOOPS

The 'EXEC CICS ENTER TRACENUM' is an excellent method of narrowing the loop.

The format of the command allows for a Traceid or number, to be associated with the command.

This Trace number can be from 0 to 199. This command also allows an 8 byte character field of text

to be associated with it. Also up to 4000 bytes of Working Storage can be displayed. The command

is as follows:

EXEC CICS ENTER TRACENUM (01)

 RESOURCE ('TEXT')

 FROM (W/S)

The 'EXEC CICS ENTER TRACENUM' does not cause CICS to return to the Dispatcher, so these two

commands do not reset the timer (ICVR).

